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FOREWORD

This American National Standard Recom-
maved Padice for Software Rdiablity hes
ben goonsored by the Ameicen Inditute of
Aegonautics and Adronautics (AIAA) as pat
of its dandards program. It origingted within
the SoeceBased Obsavaion Sydems Com
mittee on Standards (SBOS/CoS) and was
devdoped by the Soitware Rdicblity \Work-
ing Group. Members of the working group
served voluntarily and without compensa
tion; they are not necessarily members of
AIAA. This document represents a consen-
s of opnons on Sftware rdidality mea
remat from indviduds ingde and outgde
AIAA who have expresd an interet in par-
ticipating in the development of the rec-
ommended  pradice

Sftwae rdiadlity engneging (SRE) is
emerging discipline. This recommended
pradice desribes an oech to etimating
and predding the rdidblity of software and
IS intended to provice a foumlalm on which
practitioners and researchers can build
consistent methods. It is intended to meet
the nexds of oftware preciitionas and usa's
who ae corfronted with varying teminology
for rdiddlity messrament ad a pehora of
models and data collection methods. This
recommended  pradtice  contans  informéation
necessary for the application of software
reliability measurement to a project. It
indudes guidance on the fdlowing:

. Common  tamindogy
. Soitware rdiadlity edimation procedure
. Modd <Hedion

. Ddaa cdlledtion proosdure for use with the
AIAA ftware rdichlity detebese

. Opn ressach quedions
. Prediding sygem falure rates

This recommended practice was developed
to meet the needs of software reliability
pradtiiones ad rexsachas  Praditioners
ae conddaed to be the falowing:

. Managers o

. Tadmicd manegas ad aoqustion
Fedidids

. Softwae engineas

. Qudity ad rdigdlity engneas
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Sections |-4 should be read by all recom-
mended practice users. Section 5 and Ap-
pendices E and F provide the basis for
establishing the process and the potential
uses of the process. Section 7 provides the
founddion for edddishing a Softwae rdia
bility data collection program, as well as
what information needs to be collected to
the recommeded modds destribed
in Section 6 and Appendix A. Appendix B
identifies tools that support the reliability
database, the recommended models and the
analysis techniques described in Section 5
and Appendices E and F . Findly, to
improve the state of the art in software
reliability engineering continuously, AP
pendix D destribes ressarch opportunities for
conddadion. Recommended Pradtice  usars
typicaly review Chapters I-4 and begin
ng the tedhniques desribed in Sedtions
S, 6 and 7, concluding with the appendix on
rdigbility tods

The AIAA Sandads Proosdures provide thet
dl gyproved Sandads Recommeded Prac-
tices, and Guides are advisory only. Their
ue by awyone engeged in indudry o trade is
enirdy vountay. Thee is no agyeamat to
adhere to any AIAA standards publication
and no commitment to conform to or be
?wded by any standards report. In
ormulatlng, rewsmg, and approving stan-

s pudications the Committess on S
dards will not consider patents which may
apply to the subject matter. Prospective
usrs of the pubicdions ae r ibe for
proteting themsdves againg  lidality for in-
fringement of paents or copyrights, or  bath.

The viewpoints expressed in this recom-
gegded pracdg/cde are subject 1;\23 changg; dtﬁe
on opmeats in date
atarrgoa'rrnemsreoeivedfraﬂmsd‘the
recommended practice. Comments are
welcome from any interested party,
regardless of membership affiliation with

AIAA. Commats shoud be dreded to:

AIAA Headquarters
Sadads Depatmet

370 L'Enfant Pomenade SW
Washington, DC 20024-25 18
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1.0 INTRODUCTION

1.1 Scope

Software Rdiability Engineering (SRE) is an
emerging discipline. SRE is the application
of statistical techniques to data collected
during system development and operation to
specify, predict, estimate, and assess the
reliability of software-based systems. This
recommended practice defines a practical
methodology for software reliability

engineering.

The Recommended Practice for Software
Reliability provides a foundation for
practitioners and researchers. It supports the
need of software practitioners who are
confronted with inconsistent methods and
vaying terminology for rdiability estimation
and prediction, as well as a plethora of
models and data collection methods. It
supports researchers by defini n? common
terms, by identifying criteria for model
comparison, and by identifying open research
problems in the fied

This document provides guidance on the
following:

. Common terminology

Software reliability estimation and
procedure

. Modd sdection

. Data collection procedure for use with the
AIAA <oftware reiability database

This recommended prectice is applicable to
in-house, commercial, and third-party soft-

ANSI/ATIAA R-013-1992

ware projects. It has been developed to
support a systems reliability approach. As
illustrated in Figure 1, the AIAA Software
Reliability Engineering Recommended
Practice congders hardware and ultimately
systems characteristics.

1.2 Purpose

The AIAA Recommended Practice for
Software Reliability isintended to be used
from the start of the integration test phase
through the operational use phase of the
software life cycle. It aso provides input to
the planning process for reliability manage-
ment. It is assumed that the use of this
handbook has been preceded by an identifica
tion and analyss of user requirements.

The Recommended Practice describes activ-
ities and qualities of a software reliability eti-
mation and prediction program. It describes
a framework that permits assessment of risk
and prediction of falure rates, recommends a
set of models for software reliability
estimation and prediction, and specifies
mandatory as well as recommended data
collection  requirements.

1.3 Intended Audience and Benefits

The Recommended Practice is intended for
use by both practitioners (e.g., software de-
velopers, software acquisition personnel,
technicd managers, and qudity and reiability
personnel) and researchers. Its purpose is to
provide both practitioners and researchers
with a common basdine for discusson and to
define a procedure for assessing the reliability
of software, It is assumed that users of this

Sysem  Rdliability

[

Hardware Reliability

Software Reliability

Figure 1 System Rdiability Characterigtics
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recommended practice have a basic under-
ganding of the software life cycle and an un-
derstanding of datistical concepts.

This recommended practice is intended to be
used in sutpport of designing, developing and
testing software. This includes software
qudity and software rdidbility activities. It
ds0 serves as a reference for research on the
subject of software reliability.

1.4 Applications of Software
Reliability Engineering

The techniques and methodologi%praented
in this handbook have been successtully ap-
plied to software projects by industry practi-
tioners in order to do the following:

. Determine whether a specific software
process is likely to produce code which
satisfies a given software reliability
requirement,

. Determine the size of a software
maintenance effort by predicting the failure
rate during the operaiona phase,

. Provide a metric for process improvement
evauation,

. Assgt software safety certification,

. Determine when to release a software sys-
tem, or to stop testing it,

. Egimate the occurrence of the next fallure
for a software system,

. ldentify elements in a software system
which are leading candidates for re-design
to improve rdiability,

. Measure relighility of a software system in
operation, using this information to control

change to the system.

It is the intent of this recommended practice
to enable other software practitioners to make
similar determinations for their particular
software systems, as needed. Special
dtention should be given in the gpplication of
these practices to avoid violation of the
assumptions inherent in each modeling

2
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technique. Data acquisition procedures and
model selection criteria are provided and
discussed in order to assst in these efforts.

1.5 Relationship to Hardware
Reliability

The creation of software and hardware prod-
ucts are dike in many ways. and can be smi-
laly managed throughout desgn and devel-
opment. While the management techniques
may be smilar, there are genuine differences
between hardware and software [LIPO$6,
KLIN80] . For example:

. Changes to hardware require a series of im-
portant and time-consuming steps.  capita
equipment  acquisition, component  procure-
ment, fabrication, assembly, inspection,
test and documentation. Changi ng soft-
ware is frequently more feasble (athough
effects of the changes are not aways clear)
and oftentimes requires only testing and
documentation.

. Software has no physical existence. It in-
cludes data as well as logic. Any item in a
file can be a source of falure.

. Software does not wear out. Furthermore,
fallures attributable to software faults come
without advance warning and often provide
no indication they have occurred. Hard-
ware, on the other hand, often provides a
period of graceful degradation.

. Software may be more complex than hard-
ware, although exact software copies can
be produced, whereas manufacturing
limitations  affect hardware.

. Repair generally restores hardware to its
previous state. Correction of a software
fault always changes the software to a new
Sete.

. Redundancy and fault tolerance for
hardware are common practice. These
concepts are only beginning to be practiced
in software.

. Software developments have traditionaly
made little use of existing components.
Hardware is manufactured with standard

Information Handling Services,
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parts.

. Hardware reliability is expressed in wall
clock time. Software reliability is ex-
pressed in execution time.

. A high rate of software change can be detri-
mental to Software reidhility.

Despite the above differences, hardware and
software relidbility must be managed as an
integrated system attribute.  However, these
differences must be acknowledged and ac-
commodated by the techniques applied to
each of these two types of subsystems in reli-
ability andyses.

2.0 TERMINOLOGY

This chapter defines terms that are commonly
used throughout the recommended practice.
The bases for most definitions are from the
ANS / IEEE Standard Glossary of Software
Engineering  Terminology, ~ STD-729-1991.

Calendar time - Chronological time, in-
cluding time during which a computer may
not be running.

Clock time - Elapsed wal clock time from
the dstart of program execution to the end of
program  execution.

Error - (1) A discrepancy between acom-
puted, observed or measured value or condi-
tion and the true, specified or theoretically
correct vaue or condition. (2) Human action
that results in software containing a fault.
Examples include omisson or misnterpreta:
tion of user requirements in a software Speci-
fication, and incorrect trandation or omisson
of a requirement in the desgn specification.
This is not a preferred usage.

Execution time - (1) The amount of actual
or central processor time used in executing a
program. (2) The period of time during
which a program is executing.

Failure - (1) The inability of a system or
system comﬁonent to perform a required
function within specified limits. A falure
may be produced when a fault is encountered
and a loss of the expected service to the user

CCPYRIGHT 1999 Anerican Institute of Aeronautics and Astronautics
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results. (2) The terminaion of the ability of a
functiond unit to perform its required func-
tion. (3) A departure of program operation
from program requirements.

Failure rate - (1) The ratio of the number of
falures of a given category or severity to a
given period of time; for example, failures
per second of execution time, failures per
month. Synonymous with failure intensity.
(2) Theratio of the number of failuresto a
given unit of measure, for example, failures
per unit of time, fallures per number of trans
actions, failures per number of computer
runs.

Failure Severity - A rating system for the
|mPact of every recognized credible software
falure mode. For example,

. Seveity #1 - Loss of life or system

. Severity #2 - Affects ability to complete
misson objectives

. Severity #3 - Workaround avaldble, there-
fore minimal effects on procedures (mis-
Son objectives met)

. Severity #4 - Insgnificant violation of re-
quirements or standards, not visible to user
in operationa use

. Severity #5 - Cosmetic issue which should
be addressed or tracked for future action,
but not necessarily a present problem.

Fault - (1) A defect in the code that can be
the cause of one or more falures. (2) An ac-
cidental condition that causes a functiona unit
to fail to perform its required function.
Synonymous  with  bug.

Fault Tolerance - The survivd atribute of
a sysem that dlows it to ddiver the required
service after faults have manifested them-
sdves within the system.

Firmware - (1) Computer programs and
data loaded in a class of memory that cannot
be dynamically modified by the computer
during processing. (2) Hardware that con-
tains a computer program and data that cannot
be changed in its user environment. The

3
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computer programs and data contained in
firmware are classfied as software; the circuit
containing the computer progran and data is
classfied as hardware. 3? Program instruc-
tions stored in a read-only storage. (4) An
assembly composed of a hardware unit and a
computer program integrated to form a func-
tiond entity whose configuration cannot be
altered during normal operation. The com-
puter program is stored in the hardware unit
as an integrated circuit with a fixed logic
configuration that will satisfy a specific appli-
caion or operationa requirement.

Integration - The process of combining
software elements, hardware elements or
both into an overdl system

Maximum Likelihood Estimation - A
form of parameter estimation in which se-
lected parameters maximize the probability
that observed data could have occurred.

Module - gl) A program unit tha is discrete
and identifiable with respect to compiling,
combining with other units and loading; for
example, input to or output from an assem-
bler, compiler, linkage editor or executive
routine. (2) A logically separable part of a

program.

Operational - Petaning to the satus given
a software product once it has entered the op-
erdtion and maintenance phase.

Parameter - A vaiadle or arbitrary constant
aopearing in a mathematicd expresson, each
value of which restricts or determines the
specific form of the expression.

Quality - The totality of features and charac-
teristics of a product or service that bears on
its ability to satisfy given needs.

Subsystem - A group of assemblies, com-
Ponents or both combined to perform a single
unction.

Software Quality » (1) The totdity of fea
tures and characteristics of a software product
that bear on its ability to satisfy given needs,
for example, to conform to specifications.
(2) The degree to which software possesses a
desired combination of attributes. (3) The

4
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degree to which a customer or user perceives
that software meets his or her composite ex-
pectations. (4) The composte characteristics
of software that determine the degree to
which the software in use will meet the ex-
pectations of the customer.

Software Réliability - (1) The probability
that software will not cause the fallure of a
sysem for a specified time under Specified
conditions. The probability is afunction of
the inputs to and use of the system, as well as
afunction of the existence of faultsin the
software. The inputs to the system determine
whether existing faults, if any, are encoun-
tered. (2) The ability of a program to per-
form a required function under stated condi-
tions for a dtated period of time.

Softwar e Reliability Engineering « the
goplication of datidtical techniques to data
collected during ?/stem development and
operation to speci ?/ predict, estimate, and
assess the reliability of software-based
systems.

Softwar e Reliability Estimation « The
application of statistical techniques to ob-
saved falure daa collected during system
tesing and operaion to assess the reiability
of the software.

Softwar e Reliability Model - A mathe-
maticd expresson tha specifies the generd
form of the software failure process as a
function of factors such as fault introduction,
fault removal and the operational environ-
ment.

Software Reliability Prediction - A
forecast of the reliability of the software
based on parameters associated with the
software product and its development
environment.

System . (1) A collection of people, ma-
chines and methods organized to accomplish
a st of gpecific functions. (2) An integrated
whole that is composed of diverse, interact-
ing, specialized structures and  subfunctions.
(3% A group or subsystem united by some
interaction or  interdependence,  performing
many duties but functioning as a single unit.
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3.0 REFERENCE
DOCUMENTS

This section contans reference documents
that are gpplicable to the field of software re-
lighility  engineering.

3.1 Primary Documents

The following list of standards should be re-
\éi(;e(\)/\ll(ed prior to implementation of this hand-

. ANSI / IEEE Std 729-1991, “IEEE

Standard  Glossary of Software Engineering
Terminology”

. MIL-Std 756, “Reliability Modeling and
Prediction”

3.2 Other Documents

The following list of documents provide ad-

ditiona information licable to the scope of
the handbook. w b

. |EEE Std 982.1-1988, “IEEE Standard
Dictionary of Measures to Produce Relidble
Software”

. |EEE Std 982.2-1988, “IEEE Guide for the
Use of IEEE Standard Dictionary of
Measures to Produce Reliable Software”

. |EEE Std 1061-1992, “|EEE Standard for a
Software Quaity Metrics Methodology”

. MIL-Std-785, “Reliability Programs for
Systems and Equipment”

. |EEE Std 1074, “Standard for Life-cycle
Processes’

. MIL-HDBK 217, “Rdiahility Prediction of
Electronic  Equipment”

CCPYRIGHT 1999 Anerican Institute of Aeronautics and Astronautics
July 15, 1999 13:28:13

ANSI/ATIAA R-013-1992

40 SOFTWARE
RELIABILITY MODELING -
OVERVIEW, CONCEPTS, AND
ADVANTAGES

Software is a complex intellectual product.
Inevitably, some erors are made during re-
quirements formulation as well as during de-
sgning, coding and testing the product. The
development process for  high-quality  soft-
ware Includes measures that are intended to
discover and correct faults resulting from
these errors, including reviews, audits,
screening by language-dependent  tools  and
severd levels of test. Managing these errors
involves describing, classifying and mod-
eling the effects of the remaining faults in the
delivered product and thereby helping to
reduce ther number and criticdity.

Deding with faults costs money. It dso im-
pacts development schedules and system per-
formance (through increased use of computer
resources such as memory, CPU time and
peripherals requirements). As is usudly rec-
ognized, there can be too much as well as too
little effort spent dealing with faults. Thus
the sysem engineer (dong with management)
can use rdliability estimation and prediction to
understand the current status of the system
and make tradeoff decisions.

This section describes the basic concepts in-
volved in software rdliability engineering and
addresses the advantages and limitations  of
software reliability prediction and estimation.

4.1 Basic Concepts

There are a least two Sgnificant differences
between hardware reliability and software re-
liability. First, software does not fatigue,
wear out or burn out. Second, due to the
accessihility of software indructions  within
computer memories, any line of code can
contain a fault that, upon execution, is
capable of producing a failure.

A software reliability model specifies the
general form of the dependence of the failure
process on the principal factors that affect it:
fault introduction, fault removal and the
operationd  environment.
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Falure Rae

Time

Figure 2 Software Reiability Measurement Curve

The falure rate (failures per unit time) of a
software system Is generdly decreasing due
to fault identification and removd. At a pa-
ticular time, it is possble to observe a history
of the falure rate of the software. Software
rliability modding is done to edimate the
form of the curve of the falure rate by datis-
tically estimatigé] the parameters associated
with the sdected modd. The purpose of this
measure is two-fold: (1) to estimate the extra
execution time required to meet a specified
religbility objective and (2) to identify the ex-
pected reliability of the software when the
product is released. This procedure is impor-
tant for cost edtimation, resource planning,
schedule vdidation and qudity prediction for
software  maintenance  management.

4.2 Limitations of Software
Reliability Prediction and Estimation

There are two types of models that can be
applied for software reiability measurement.
Fird, there are prediction models which make
use of parameters associated with the soft-
ware product and its development environ-
ment to predict the rdiability of a software
product. Second, there are estimation models
which apply datistical techniques to the ob-
served tailures during software testing and
operdtion to forecast the product's reliahility.
This section describes the limitations of each
type of model.
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Both prediction and edtimation models need
good data if they are to yield good forecasts.
Good data implies accuracy (that data is truth-
fully recorded a the time the events occurred)
and pertinence (that data relates to an environ-
ment thet is equivadent to the environment for
which the forecast is to be vdid). A negative
example with respect to accuracy is the re-
stricting of failure report counts to those
which are completdly filled out. This is neg-
ative because they may represent a biased
sample of the total reports. A negative ex-
ample with respect to pertinence would be the
use of data from early test runs a an uncon-
trolled workload to forecast the results of a
later test executed under a highly controlled
workload.

4.2.1 Prediction Model Advantages /
Limitations

In prediction models, the falure probability
of a program in development is forecast by
compaing it to the known falure probability
(or other reliability parameters) of an existing
program. The existing program is known as
aproof program. The advantage of this
procedure is that it can be performed a any
time during the development, whereas
reliability estimation depends on the
availability of operational or test data. The
vaidity of the prediction depends on (a) the
degree of similarity between the program
under development and the proof program
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(for which falure rates are known), and (b)
the qudity of known falure rate data

When there is direct equivlence between the
proof program and the program under devel-
opment, reliability prediction is a specific
application of the Smilar Item Method as de-
fined in MIL-STD-756B. The criteria estab-
lished in MIL-STD-756B for application of
this method include;

. Desgn gmilarity

. Similarity of service use profile

. Procurement and project similarity
. Proof of reiability achievement.

Because dl these criteria can be met only un-
der rare circumstances, dternative methods
are usualy followed. The most applicable
dternative for software involves the follow-

ing steps.

(1) Estimate the size of the source code.
This is a routine step in software
development. Many organizations have
asize growth model that compensates
for the usuad underestimating of program
Sze during ealy stages of development.

(2) Edimate the fault density (faults per line
of source code) at the start of formal test
(a test activity applicable to the program
as a whole and for which computer
usage hours will be collected). The
preferred approach is to use the fault
density determined for a gmilar program
cregted in the same environment. Where
this is not possible, a fault density
ranging from 0.001 (for programs
developed in a highly disciplined
environment and by programmers that
have extensve background in the
specific application) to 0.01 in amore
routine environment may be assumed
[MUSAS87, Table 5.21.

3) The product of (1) and (2), gives the ex-
pected number of faults in the code &t the
start of formal test. This number

corresponds to wg in the Musa Basic
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Model [MUSAS87, Eq. 5.2] and to N in
the Jdinski-Moranda Modd  (Appendix
A).

In some environments, the relation between
the falure rate a a given point in the deve-
opment and the fault content at the start of test
may be known from experience. In that case,
the locd factor should be used and the fol-
lowing steps can be omitted.

(4) The key condderations for most models
ae () the initid number of faults (b)
the probability of executing a specific
fault during a dngle execution (the fault
exposure ratio), and (c) the time for
which the prediction is to be vdid. The
latter consideration is at the user's
discretion; in some models the time is
defined in terms of the number of faults
that have been found. The value of the
fault exposure ratio is 4.0 + 2x10-7 for 8
out of 13 examples shown 1n [MUSAS7,
Table 5.61; the tota range is 1.41 x 10-7

to 10.6x10-7. Where the fault exposure
ratio for similar programs is known, that
vaue should be used in preference to the
default vaues of the previous sentence.

(5) The falure probability per fault and unit

time is denoted by ¢ in the Jelinski-
Moranda Model and by fK in the Musa
Basic Model. The factor f is the
frequency at which a given (object)
instruction will be accessed by the
program. It can be computed from f =
t/l, where r is the execution rate of the
computer and | is the number of object
instructions in the program. The
dimension of r isinstructions per unit
time and the time units must be
consistent with those for which the
falure rate prediction is to be generated.
Since execution rate is normally
expressed per second and failure rates
are expressed per hour, an ag)ropriate
converson has to be performed.

(6) The initial failure rate can then be

predicted as Ag = fKwg for the Musa

Basc Modd. With these parameters, the
expected falure rate a a future point in
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time (or after agiven number of faults
have been detected) can be found by
using most of the models described in
Section 6 or Appendix A.

Other prediction models use data on the ap-
plication area, development and test environ-
ments, and characteristics of the code (eg.
complexity, modularity) [MCCAS87]. These
are alternative ways of estimating the fault
densty and / or the fault exposure ratio. To
date, none of these approaches has been
shown to be widely applicable. Their use
should be redtricted to environments where
their vaidity has been demondirated

4.2.2 Estimation Model Advantages /
Limitations

The premise of most estimation models is that
the failure rate is a direct function of the
number of faults in the program and that the
falure rate will be reduced (reliability will be
increased) as faults are detected and eimi-
nated during test or operations. This premise
IS reasonable for the typica test environment
and it has been shown to give credible results
when correctly applied. However, the results
of estimation models will be adversely af-
fected by:

. Change in falure criteria
. Significant changes in the code under test

. Significant changes in the computing envi-
ronment.

All of these factors will require a new set of
reliability modd parameters to be computed.
Until these can be edablished, the effective-
ness of the model will be impaired.
Edtimation of new parameters depends on the
measurement of several execution time inter-
vas between failures.

Maaﬂ'or changes can occur with respect to sev-
of the above factors when software be-
comes operationd. In the operationd envi-
ronment, the falure rate is a function of the
fault content of the program, of the variability
of input and computer states, and of software
maintenance policies. The latter two factors
are under management control and are fre-
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quently utilized to achieve an expected or de-
gred range of values for the falure rate or the
downtime due to software causes. Examples
of management action that decrease the falure
rate include: avoidance of high work loads
and avoidance of data combinations that have
caused previous failures [GIFF84,IYER83].
Software in the operationa environment may
not exhibit the reduction in falure rate with
execution time that is an implicit assumption
in most estimation models [HECHS86a].
Knowledge of the management policiesis
therefore essentiad for selection of a software
reliability estimation procedure for the
operational environment. Thus, the estima-
tion of operationd religbility from data ob-
tained during test may not hold true during
operations.

Ancther limitation of software rdidbility es
timation models is their use for veritying
ultra-high requirements. For example, if a
program executes successfully for x hours,
there is maybe a 0.5 probability that it will

survive the next x hours without failing

[LITT90]. Thus, to have the kind of ~

confidence needed to verify a 109 require-
ment would require that the software execute
falurefree for severd hillion hours. Clearly,
even if the software had achieved such a reli-
ability, one could never assure that the re-
guirement was met. The most reasonable
verifidble requirement is somewhere in the

10-3 or 104 range.

It is important to understand the nature of the
program when discussing  ultrachigh  require-
ments. Many ultrardiable g)pllcatlons ae
implemented on relatively sm inex-
pensve computers. Furthermore, the critica
lorograms are small (lessthan 1000 source
ines of code) and execute infrequently during
an actual mlsson With this knowledge, it
may be feasble to test the criticd program
segment on several faster machines,
considerably reducing the required test time.

Furthermore, where very high reiability re-
quirements ae dated (falure probabilities

< 10-6) they frequently are applicable to a
software controlled process together with its
protective and mitigating facilities and there-
fore they tend to be overstated if gpplicable to
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the process adone. An example of a protec-
tive facility is an automatic cut-off system for
the primary process and reverson to anaog
or manud control. An example of a mitiga
tion faclity is an automatic sprinkler system
that sgnificantly reduces the probability of
file damage in case the software controlled
process generates excessve heat. If the basic
requirement is tha the probability of exten-
sive fiie damage shall not exceed 10-6 per
day, and if both protecting and mitigating
facilitiesare in place, it is quite likely that
further analyss will show the maximum d-
lowable failure rate for the software con-
trolled process to be on the order of 10-3 per
d% and hence within the range of current re-
liability edtimation methods.

Where the requirements for the software
controlled process proper dill exceed the ca
pabilities of the estimation methodology after
dlowing for protective and mitigating facili-
ties, fault tolerance techniques may be ap-
plied. These may involve fault tolerance
[HECHS86b] or functiona diversity. An
example of the latter is to control both tem-
perature and pressure of steam generation,
such that neither one of them can exceed
safety criteria. The reduction in failure prob-
ability that can be achieved by software fault
tolerance depends in a large measure on the
independence of falure mechanisms for the
diverse implementations. It is generdly eas
ier to demonstrate the independence of two
diverse functions than it is to demonstrate the
independence of two computer programs,
and hence functiond diversty is frequently
preferred.

5.0 SOFTWARE
RELIABILITY ESTIMATION

PROCEDURE

This section provides guidance to the practi-
tioner on how to do software reiability esti-
mation and what types of anaysis can be per-
formed using the technique. It defines a
generic  step-by-step  procedure for  executing
software reiability estimation and  describes
possible andyss using the results of the es
timation  procedure.

COPYRIGHT 1999 Anerican |Institute of Aeronautics and Astronautics
July 15, 1999 13:28:13

ANSI/ATAA R-013-1992

5.1 Generic Procedure

An eleven-step generic procedure for estimat-
ing software reiability Is lised below. This
generic procedure should be talored to the
project and the current life-cycle phase.
Some steps will not be used in some gpplica
tions, but the dtructure provides a convenient
and easily remembered standard approach.
The following steps can be used to generate a
checklist for reiability programs:

1) Identify Application

2) Specify the Requirement

3) Allocate the Requirement

Since this document is concerned only with
the test through operational life-cycle activi-
ties, only steps (4) through (11) are
discussed.

4) Define Failure

5) Characterize the Operationad Environment
6) Select Tedts

7) Sdect Modes

8) Collect Daa

9) Edtimate Parameters
10) Vdidae the Modd
11) Peform Andyss
5.1.1 Define Failure

A project specific falure definition is usudly
negotiated by the testers, developers, and
users. It is agreed upon prior to the begin-
ning of test. In spite of this necessary
talloring, there are often commondities in the
definition among sSmilar products (eg., most
people agree that a software bug that when
encountered stops al processing is a failure).
The important consideration is that the
definition be consgtent over the life of the
project.

There are a number of specific consderations

9
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relating to the interpretation of failure for
sysems. The andyst must determine the an-
swers to these questions:

. Is a falure counted if it is conscioudy de-
cided not to seek out and remove the cause
of a particular falure?

. Are repested failures counted?
. Wha is a falure in a fault-tolerant system?

. Are a series of falures counted if they are
triggered by data degradation?

A discusson of each of these considerations
IS provided in [MUSAS87, pp 77-85].

Projects need to classify failures by their
severity. An example classification is pro-
vided in Section 2. Classes ae usudly sepa
rated by an order of magnitude in costs.
Impact can not ordinaily be estimated with
great precision. It is desirable to consider
Severity by type, and by user requirement.

For some projects, there appears to be a rda

tive homogeneity with respect to time-of-fail-
ure among high-severity failures. For
example, If 10 percent of the failures
occurring early in test fall in a particular
class, about the same percentage will be
expected to be found in that class late in test.

This permits making, for example, Statistical
estimates based on all data to achieve a
smaler confidence interval and then adjusting
them to per class estimates. It also is
possble to weght falure daa by a vaiddle
(such as cost) associated with class and to
obtain compound estimates such as failure
cost rather than falure intengties.

It is recommended that failure times be
recorded in execution time. However,
should execution time not be readily
avalable, eapsed clock time is a satisfactory
approximation if machine utilization is
congtant (when averaged over a time period
comparable to the times between failures). If
utilization is not constant, one often can
weight the clock time by ameasure that is
B(ra(r)portional to the utilization, such as num-

of uses of a red-time system. Execution
time also can be approximated by natural

10

units like transactions.

When falure times are collected from multi-
ple machines functioning Smultaneoudy, in-
tervals between falures should be counted by
conddering execution time on al machines.
If the machines have different average in-
struction execution rates, execution times
should be adjusted to areference machine

[MUSAZS7, pp 162-165].

5.1.2 Characterize the Operational
Environment

Characterization of the operationd environ-
ment has three aspects. 1) system configura-
tion, 2) system evolution, and 3) system op-
erationd profile.

Sysem configuration is the arangement of
the system’s components. Software-based
systems are just that; they can not be pure but
must include hardware as well as software
components.

Distributed systems are a tyTpe of system
configuration. The purpose of determining
the system configuration is twofold:

. To determine how to dlocate system relia
bility to component religbilities

. To determine how to combine component
rdidbilities to edablish sysem reidhility
[MUSAR7, pp 85-106).

In modeling software reliability, it is neces-
s‘ar?r to recognize that systems frequentl
evolve as they are tested. That is, new code
or even new components are added. Specia
techniques for dealing with evolution are
provided in [MUSAS87, pp166-176].

The sysem operationd profile characterizes
in quantitative fashion how the software will
be used. It ligs al operations redized by the
software and the probability of occurrence
and criticality of each operation.

A sysem may have multiple operationd pro-
files or operating modes. They usudly repre-
sent difference in function associated with
dgnificant  environmental  variables. For ex-
ample, a space vehicle may have ascent, on-
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orbit and descent operating modes. Operat-
ing modes may be related to time, inddlation
location, customer or market segment.
Reliability can be tracked separately for
different modes if they are sgnificant. The
only limitation is the extra data collection and
cos  involved.

5.1.3 Select Tests

Many applications of software reiability en
gineering involve the execution of operaions
and collection of failure data. Oﬁerations
should be picked to reflect how the system
will actudly be used. Reference Appendix C
for information that may be useful in deter-
mining failure rates. In other words, the test
operationd profile should represent the field
operdtiond  profile.

The tester sdects one of the following ap-
proaches.

. Test duplicates actual operationd environ-
ments (as closaly as possible)

. Testing conducted under more severe
conditions, for extended periods of time -
rellting in falures being accumulated in
less than expected time.

The modeling effort must teke into account
the specific agpproach taken by the test team to

expose faults so that accurate forecasts can be
made.

5.1.4 Select Models

The modds described in Section 6 have been
identified for giving good results in specific
environments, but it can not be guaranteed
that they will be suitable in new environ-
ments. Therefore it is recommended that
each user compare severd models prior to fi-
nd sdection.

A lig of the mode sdection criteria described
in Section 6.1 is provided below:

. Predictive Vdidity
. Eae of Parameter Measurement

. Qudity of Assumptions
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Cepeility
Applicability
Simplicity

. Insengtivity to Noise

In generd, each modd should be evauated

by these criteria, using the best model to
make forecasts.

5.1.5 Collect Data

Data collection must be geared toward the
overdl objectives of the software reiability
_efforta such as the atainment of a falure-free
interval.

In considering setting up areliability pro-
ram, one must avoid severa pitfalls. The
Irs is that every bit of information about the
program and what happens to it as it evolves
over the life cycle needs to be kept. The sec-
ond is tha clearly defined objectives for the
data collection process are not necessary.
These two pitfals result in too much effort
expended with too little payback. When a
massive amount of data is required, it is
usually the program manager’ s people that
ae impacted. Cost and schedule suffer.
Two additiond points that should be kept in
mind while planning to collect data and col-
lecting data are: (19 motivate the data collec-
tors, and (2) review the collected data
promptly. It these two things are not done,
quaity will suffer.

A lig of the data collection seps detailed in
Section 7.1 is provided below:

1) Edablish the objectives.

2) Set up a plan for the data collection pro-
CESS.

3) Apply tools.

4) Provide training.
5 Peform trid run.
6) Implement the plan.

1

Information Handling Services,

1999




OCPYRI GHT 1999 Anerican Institute of Aeronautics and Astronautics

July 15, 1999

AlAA R=-013 92 EE0ObA5534 0000LYEL 7?38 IN

ANSI/AIAA R-013-1992

7) Monitor data collection.

8) Evaluate the data as the process
continues.

9) Provide feedback to al parties.

In general, a process should be established
addressing each of these steps, and a suc-
cessful software reliability data collection
progran will emerge.

5.1.6 Estimate Parameters

There are three common methods of parame-
ter estimation: method of moments, least
sguares, and maximum likelihood. Each of
these methods has attributes that make it use-
ful. However, maximum likeihood estima
tion is the most commonly used approach. A
full trestment of parameter estimation is pro-
vided in [MUSA87, FARR83, and
SHOQ83]. All of the software reigbility en-
ineering tools described in Appendix B per-
orm parameter estimation as one of their ca
pabilities using one or more of these
methods.

5.1.7 Validate the Model

Severa congderations ae involved in prop-
erly validating a model for use on a given
production project. Firdt, it is necessary to
ded with the assumptions of the mode under
evaluation. Choosing appropricte falure data
items and relaing ific falures to particu-
lar intervals of the life-cycle or change incre-
ments often facilitate this task [SCHN92].
Depending on the progress of the production
project, the model validation data source
should be sdected from the following, listed
in the order of preference:

1) Production project failure history (if
project has progressed sufficiently to
produce fallures).

2) Prototype project emploKing smilar prod-
ucts and processes as the production pro-
ject.

3) Prior project employing smilar products

and processes as the production project
(reference Appendix C)
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Using one of these data sources, the andyst
should execute the mode for severa specific
times within the failure history period and
then compare the mode output to the actud
subsequent failure history using one of the
following:

1) Predictive validity criteria (Section
6.1.1).

2) A traditional statistical goodness-of-fit
test (e.g., Chi-square or Kolmogorov-
Smirnov).

It is important that a model be continuoudy
re-checked for validation, even after sdlection
and application, to ensure that the fit to the
observed failure history is satisfactory. In
the event that a degraded modd fit is experi-
enced, dternate candidate models should be
evauated using the procedure above.

5.1.8 Perform Analysis

Once the data has been collected and the
model parameters estimated, the analyst is
ready to perform the appropriate analysis.
This andyss may be to edimate the current
reliability of the software, forecast the
number of faults remaining in the code, or
forecasting a testing completion date. Section
5.2 details a set of common analyses
conducted using software reliability theory.

One pitfdl to be careful of is the combination
of a software reliability vaue into a sysem
reliability cdculation. It the andyss cals for
producing a system rdiability figure and the
software  reliability is cdculated in terms of
execution time, it must be converted to
cdendar time for combination with hardware
relidblities to cdculate the sysem vaue.

5.2 Recommended Analysis Practice

This section provides details of analyss pro-
cedures for some common engineeri gg or
management activities that can be aided by
software  reliability  engineering  technology.
These detals are In most cases a description
of the andyss that must be performed as the
last step of the generic procedure described in
Section 5.1. Although this list is far from
complete, it is a set to start from.
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5.2.1 Estimate Current Reliability

Since software will not fal until the software
IS executed and a software fault is manifested
by the computer, the time measurement based
on CPU time for falure data collection is pre-
ferred. However, there are approximating
techniques if the direct measurement of CPU
time is not available [MUSAS87, pp 156-158].
When combined with hardware reliability
measurement  (to form the system rdiability
prediction) the CPU time dso can be trans
fo:ggned to cdendar time [MUSA87, pp 113-
1391

Religbility estimations in tet and operationd
phases basicaly follow the same procedure.
However, there is a difference. During the
testing phase, software faults are intended to
be removed as soon as the corresponding
software failures are detected. As aresult,
the reliability growth could be observed.
However, in the operationd phase, correcting
a Software fault involves changes of multiple
software copies in the customers' sites,
which, unless the falure is catastrophic, is
Inot aways done until the next software re-
eee.

Therefore, the software falure rate usualy

ANSI/ATIAA R-013-1992

remains constant until anew versionisre-
leased, in which case a jump in reliability
should be observed. Nevertheess, the users
might change the use of the software to avoid
triggering the known fallure. In other words,
the operationad profile is changed and certain
growth of religbility could sill be observed.

5.2.2 Forecast Achievement of a
Reliability Goal

The date a which a given reliability god can
be achieved is obtanable from the software
reliability modeling process illustrated in
Figure 3. As achievement of the reliability
target approaches, the adherence of the actud
data to the mode should be reviewed and the
model calibrated if necessary. Refer to
Appendix F, “Using Reliability Models for
Developing Test Strategies”

5.2.3 Forecast Additional Test
Duration

Additiona test duration may be predicted if
the initid and objective falure intendties and
the parameters of the model are known.
(These are identified for each model in
Section 6.) For the Musa Basic exponentiad
model we have:

Falure Rate

current
falure rate

falure rate

Obhjective -

—— TIMerequiredio mmmmgp]|

complete testing

Time

Figure 3 Example Software Rdiability Measurement Application
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Vo, [ A
At = 2In| =2
Ao (lp)
where At is the test duration in CPU hr, v, is

the totd failures parameter of the model, A,

istheinitial failure intensity, and Ag is the
objective falure intensty.

The forrnula for the Musa-Okumoto Loga-
rithmic Poisson mode is

At:-l- _l__i
ol A,

where 8 is the failure intensity decay pa-
rameter.

Calendar time test duration could be com-
pu ted manually. However, all calculations
ae genedly avalabdle in software rdidhility
tools (See Appendix B), and the formulas
given above are only occasionally applied
manualy.

5.2.4 Establish Conformance with
Acceptance Criteria

If religbility-related criteria are part of soft-
ware acceptance, the model should be se-
lected so that its results can be eesly inter-
preted for conformance with the selection
criteria. For example, timeto-faillure models
ae consstent with requirements for failure-
free intervals. Falure count models are suit-
able for establishing conformance with
maximum falure rate requirements.

5.25 Manage Introduction of New
Featuresinto Operational Software

Decisons about whether and when to intro-
duce new features into operational software
must be made. Introduction of new features
carries the risk of adding new faults and
hence increasing the failure intensity. This
could raise the falure intensty to such a level
that the impact on service Is unacceptable.
Software  religbility engineering  provides a
quantitative way of measuring service and
hence a guide for permitting or delaying the
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introduction of the new features. Failures are
regulaly recorded during operation and fail-
ure daa is entered in a software reliability es-
timetion program, which is run a regular in-
tervals (frequently weekly). A running plot
of falure intengty is generated.

A falure intendty objective is sdlected based
on a baance between the need for new fea
tures and the need that old features operate
reasonably reliably. The proximity of the
actud falure intengty to the objective is now
used as the criterion for accepting new fea
tures. New features are accepted only when
the actud falure intensty is sufficiently be
low the objective that it appears unlikely that
the addition of the new features will increase
the falure intendty subgtantidly above the
objective.

5.2.6 Evaluate Reliability Impact of
Software Engineering Technology
Variables

It is important to know the impact of
technology on software reliability. This
knowledge will make it possble to desgn an
efficient development process for a particular
software product. These impact sStudies have
not been performed to any extent at the
writing of this document, but they could and
should be. For example, the relationship
between effort devoted to design inspection
per thousand source lines of code and the
change in falure intendty should be sudied.
This is done by holding other variables
condant as design inspection effort is varied.
The resultant quantity that is measured could
be initid falure intensity at the dtart of system
test.

5.2.7 Estimate Maintenance Staffing
Requirements

Three quantities are needed to edtimate the
staff required to restore systems after a soft-
ware falure fird, the average time required
for a repair person to restore the system after
a falure (including travel time); second, the
expected operating time of the softwarein
time units; and third, the expected falure rate
of the software in operation.

Multiplying the falure rate by the operationd
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time yidds the expected number of failures
per time unit. Using this number and the av-
erage time to restore the system, the number
of repar personnel can be derived. It is im-
portant to assign more repair personnd than
this estimate to account for variations in fail-
ure occurrence that may result in lower sys
tem avaldility.

5.2.8 Assist Safety Certification

A <oftware safety falure can be defined as
ay software system behavior tha involves
risk to human life, risk of injury or risk of
equipment damage. Thus, Falure Severity
#1 (see Terminology Section 2 - “Failure
Severity”) falures fal into this category. The
falure rate based on the falures in this cate-
gory can be determined to support software
sofety  cetification. It IS important to note
that reliability isanecessary, athough not
sufficient, condition to ensure safety and
should not be used as the only criterion for
safety certification.

6.0 SOFTWARE
RELIABILITY ESTIMATION
MODELS

There are many ways to develop a software
religbility mode: (a) describe it as a stoches
tic process, (b) relate it to a Markov mode,
(c) define the probability density or distribu-
tion function, or (d) specify the hazard func-
tion. These gpproaches are dl equivdent and
equally correct. There are three general
classes of software reiability estimation mod-
gs  Exponentid non-homogeneous  Poisson
process (NHPP) models, Non-exponential
NHPP models and Bayesian models. The
following paragraphs describe the character-
igtics of each genera class.

Exponential NHPP Models

Exponentiad NHPP models use the stochadtic
process and the hazard function approach.
The hazard function, z(t), is generally a
function of the operationd time, t Severd
different derivations of z(t) are given in
#SHOO90a]. The probability of success as a
unction of time is the rdliability function,
R(t), which is given by:
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t
R(t) =exp[- ({ z(y)dy]

Sometimes reliability is expressed in terms of
a single parameter: mean time to failure,

(MTTF). MTTF is given by:
MTTF = | R(t) dt
0

On occasion the religbility function may be of
such aform that MTTF is not defined. The
hazard function (or falure intensity,
&MUSA87, pp. 11, 18]) or the reliability
unction can be used in this case. The hazard
function can be congtant or can change with
time,

Representative models selected for this class
include: Shooman’s model; Musa's Basic
model; Jelinski and Moranda's model
(described in Appendix A); and the
generdized exponentid model  (described in
Section 6.2). Model objectives, assump-
tions, parameter estimates, and considera-
tions for using the modd ae described in the
appropriate  section,

Non-Exponential NHPP Models

Non-Exponentid  NHPP modds dso use the
stochastic process and the hazard function ap-
proach. They are generdly agpplicable when
testing is done, according to an operaiond
profile that is not uniform in nature. Early
fault corrections have a larger impact on the
fallure intengty function than later ones.

Representative models selected for this class
include: Duan€’'s model; Brooks and
Motley’s Binomial and Poisson models;
Yamada's S-shaped model (all described in
Appendix A); and Musa and Okumoto's
Logarithmic  Poisson  (described  in - section
6.2). The assumptions and format of the
respective model, its estimates for model
fitting, and findly consderations for the em-
ployment of the model are described in the
appropriate  section.
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Bayesian Models

Bayesan models differ from NHPP modes
in two ways. First, where NHPP models
only allow for change in reliability when a
fault is discovered and corrected, Bayesian
modes dlow reliadility to change based on
the length of falure-free testing time periods.
Second, NHPP models assume that the
hazard function is directly proportiond to the
number of faults in the program and hence
the rdiability is a function of this fault count.
The Bayesan approach argues that a program
can have many faults in unused sections of
the code and exhibit a higher rdiability then
software with only one bug in a frequently
exercised section of code. Representative
models of this class are those developed by

Litlewood [LITT?79].
6.1 Criteria for Model Evaluation

This following criteria should be used for
conducting an evaluation of software
reliability models in support of a given
project.

. Modd predictive vdidity. the performance
and correctness of the forecast quality of
each model. Measures defined for this are
accuracy, trend, bias, and noise.

. Ease of measuring parameters. the resource
requirement and Impact of measuring pa
rameters for each model, including cost,
schedule impact for data collection, and
physicd dgnificance of parameters to the
sortware development  process.

. Quality of assumptions: the closenessto
the red world, and adaptability to a specid
environment.

. Cepability: the ability of each modd to edti-
mate useful quantities needed by software
R/ﬁject personnel, including expected

TF, time to reach a specified MTTF
oal, garl]d the required resourcesto reach
that godl.

. ApPIicabiIity: the ability to handle program
evol

Iution and change in test and operational
environment.

13:28:13

. Smplicity: ease of understanding the con-
t, data collection, program implemen-
tation, and vaidation.

. Insensitivity to noise: the ability of the
model to produce results in spite of smal
differences in input data and parameters
without losing responsveness to Sgnificant
differences

6.1.1 Model Predictive Validity

To compare a set of models on a given set of
falure data, one must examine which of the
fitted modelsis best in agreement with the
observed data. A firted model is one that has
had its parameters estimated from the ob-
served data. The question being asked is. Is
it plausble to have obtained the observed data

by sampling from the fitted model? If Fis
the function of the model with estimated
parameters, this question can be answered by
a hypothesis test with a null hypothess.

Hp : the failure data are from amodel with
distribution  function, E.

This is caled a goodness-of-fit test since it
tests how well the modd “fits’ the observed
data. Goodness-of-fit tests are a way to
detect systematicaly farly gross disagree
ment between the data and the fitted modd.
The literature on goodness-of-fit tests is quite
extensive; the chi-square and Kolmogorov-
Smirnov tests are the most popular tests
[HOEL71].

In addition to these techniques for assessing
model fit, the following four measures can be
used to compare moded forecasts on a set of
falure data

6.1.1.1 Accuracy

Forecasting accuracy is measured by the
prequential likelihood (PL) function

[LITT86]. Let the observed falure data be a
sequence of times ti, t2,..., tj.1 between
successive falures. The objective is to use
the data to forecast the future unobserved Ti;.
More precisdy, we want a good estimate of
Fi(t), defined as P(Tj,<t), i.e, the probability
that T; is less than a variable t. The
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forecasting didribution Pi(t) for Ti based on
11, t2, ..., tj.1 Will be assumed to have a paf
(probability dengty function).

()= SEO

For such one-step-ahead forecasts of
Tj+1,...-Tj+n, the prequentia likelihood is:

i= j+1

Since this measure is usudly very close to
zero, its naturd logarithm is frequently used
for comparisons. Given two competing
software reliability models A and B, the
prequential likdihood ratio is given by

_ P In(A)
" PIn(B)

PLR,

The raio represents the likelihood that one
model will give more accurate forecasts than
the other model. If PLRy = co asn — oo,
modd A is favored over modd B.

6.1.1.2 Bias

A modd is consdered biased if it forecasts
values that are consistently longer than the
observed failure times, or consstently shorter
than the observed times. To measure the
amount of a mode’s bias, one can compute
the maximum vertical distance (i.e., the
Kolmogorov Distance [HOEL7 11) between
the line of unit slope and the values of the
probability integrd transformation given by:

u; = l~Ji(ti)

Each uj is a probability integra transform of
the observed t; using the previously calcu-

|ated predictor F; based upon t1, t2, . . . . ti-1-
That is, u; is the estimated mode digtribution
function evaluated at the observed failure
times. To identify the direction toward which
a modd is biased, use the notation that a pos-
itive number means that the modd tends to be
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optimistic, while a negative number repre-
sents the model to be pessmigtic. In either
case, the smaller the absolute value of the
number is, the less bias there is inherent in
the modd.

6.1.1.3 Trend

In some cases a modd may be optimigtic in
an early set of forecasts and pessmistic in a
later set of forecasts. The hias test described
above will average these effects, and the
model will gppear unbiased. In this case it is
important to examine the u;’s for trend.
Trend is defined as the Kolmogorov Distance
between the line of unit dope and the cdf of
yi» Where

Xi= —ln(l-ui)

The trend represents the consistency of the
model’ s bias. A small value means that the
model is more adaptable to changesin the
data behavior, and hence yields better
performance.

6.1.1.4 Noise

The test for noise is roughly anaogous to the
mean square error in classical datigtics. The
god of the measure is to indicate objectively
which mode! is giving the least variable
forecasts (i.e, finding the most stable mode
for a particular data set), The measure is
defined as

n
. I;—TI;_
Noise = Z il
=2l Ti-1 |

where rj is the forecasted falure rate (1/Tp.
Note that the forecasted median of the failure
time distribution, denoted by m;, may be
used in place of r;. In either case, small
values represent less noise in the forecasts of
the modd, indicating better smoothness. A

17

Information Handling Services,

1999



AIAA R-013 92 BB 0695534 0000LS2 T31 W

ANSI/ATAA R-013-1992

Noise vdue equd to infinity indicates that a
faillérei rate of zero has been forecasted by the
model.

6.1.2 Ease of Measuring Parameters

Ease of measuring parameters refers to the
number of parameters a model requires, and
the difficulties in esimating these parameters.
Mog software reiability edtimation models
incorporate either two or three parameters.
As a rule-of-thumb, a modd requires falure
data equa to at least five times the number of
parameteres to be estimated. In general, a
three-parameter model can achieve better
accuracy in fitting the falure data curve than
can a two-paameter model. However, this is
not generally true for making software
reliability forecasts. When two models
demonstrate the same level of forecasting
capability, the model which requires fewer
parameters should be chosen. This is not
only because amodel with fewer modesis
easer to apply, but aso because a software
reliability engineer can more successfully
interpret the physical significance of the
parameters to provide appropriate feedback to
the software development process.

6.1.3 Quality of Assumptions

The assumptions that a software reliability

model makes should be as close to the red

project testing and operational situation as
ible. Common assumptions made in the

software reliability models are:

. Test input randomly encounter faults.

. The effects of al falures are independent.

. The test space “covers’ the use space.

. All falures are observed when they occur.

. Faults are immediately removed upon fail-
ure or not counted again.

. The software failurerate isrelated to the
number of software faults remaining in the
software,  software reliability models  spec-
ify this relationship.

If an assumption is testable, it should be sup-

18

ported by data to vdidate the assumption. If
an assumption is not testable, it should be
examined through the viewpoint of logical
congsency and Software engineering experi-
ence. Moreover, al model assumptions
should be jud?ed by their claity and explicit-
ness. This will help to determine whether a
paticular model applies to the current project.

6.1.4 Capability

Capability refers to the ability of a mode to
estimate reliability related quantities for
software systems. These quantities include:

. The present reliability of the software, the
software failure rate, or mean-time-to-fail-
ure (MTTF), or the falure rate digtribution.

. Confidence intervals for all estimated
parameters.

. Expected date of achieving a specified
rdiability, falure rate, or MTTF objective.

. Resource (human and computer) and cost
edimates related to achieving the rdiability
objective.

Other than the capability to make software re-
ligbility measurements in the testing and gFe“-
ational phase, the caPabiIity of amodel to
meke <Software rdliability predictions in the
sysem design and ealy development phases
is also very important. These predictions
should be examined through future research
in software metrics, the software devel op-
m?rllt environment, and the operational
profile.

6.1.5 Applicability

Applicability of the software models should
be examined through various sizes, struc-
tures, functions, and application domains.
An advantage of a specific model is its
usability in different development and
operational environments, and different life-
cycle Phases In the application of software
reliability models, the following situations
should be dedt with by the models:

. Evolving software (i.e, software that is in-
crementelly integrated during testing),
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. Classfication of falure severity,

. Incomplete falure data,

. Hardware execution rate differences,

. Multiple ingdlations of the same software,

. Project environments departing from model
assumptions.

6.1.6 Simplicity

Simplicity refers to three aspects of a modd:
the data collection process, the modelling
concept, and its implementation by a software
tool. Simplicity in data collection reduces the
measurement cost, increases the data
accuracy, and makes it easier for model
goplication. Simplicity in the modding con-
cepts makes it easier to understand the as-
worr(yotions estimate the parameters, gpply_ the
models, and interpret the results. Simplicity
in the modd implementation encourages an
efficient use of computers to facilitaie the
model applications which are normally
computationdly  intensive.

In choosing a model, one should give weight
to smplicity. Until an organization has prac-
ticed reliapility estimation afew times, no
more complex models are warranted, nor in
general will there be data to support more
complex models.

6.1.7 Insensitivity to Noise

Software reliability data generally contain
noise irrelevant to the modeling process. The
most common source of noise is that soft-
ware falure daa is recorded in project cd-
endar time rather than in software execution
time. Even when software failures are
tracked carefully based on execution time, the
software testing process may be inconsistent
with the model assumptions (eg. the soft-
ware is not tested randomly). Therefore, a
model should demondgrate its vaidity in an
idedl gtuation as wel as in gtuaions when
the failure data is incomplete or contains
measurement  uncertainties.
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6.2 Recommended Models

The following modes are recommended as
initid models for software reiability estima
tion; the order is ahitrary: the Schneidewind
model, the generalized Exponential model,
the Musa / Okumoto L ogarithmic Poisson
modd and the Littlewood / Verdl modd. If
these models can not be vaidated (see Sec-
tion 5.1.7) or do not meet the criteria defined
in Section 6.1 for the project, aternative
models are described in Appendix A.

6.2.1 Recommended M odel:
Schneidewind M odel

6.2.1.1 Schneidewind Objectives

The objectives of this model are to forecast
the following software product attributes:

. Number of failures that will occur by a
given time (execution time, labor time, or
cdendar time)

. Maximum number of failures that will
occur over the life of the software

. Maximum number of failures that will
occur after a given time

. Time required for a given number of
failures to occur

. Number of faults corrected by a given time

. Time required to correct a given number of
faults

. Number of outstanding (observed but not
corrected) faults a a given time

. Incremental time required to correct a given
number of outstanding faults

. Time required for outstanding faults to
reach a given vaue

The basic philosophy of this modd is that as
testing proceeds with time, the failure
detection process changes. Furthermore,
recent failure counts are usualy of more use
than earlier counts in forecasting the future.
Three approaches ae employed in utilizing
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the fallure count data, i.e. number of falures
detected per unit of time. Suppose there are
m intervals of testing and f; tailures were
detected in the ith interval, one of the
following can be done:

. Utilize dl of the falures for the m intervas

. Ignore the falure counts completely from
the first s— 1 timeintervas (2 £ s<€m)
and only use the data from intervals s
through m.

. Use the cumulative failure count from
intervals 1 through s = 1, i.e.

The first aﬁproach is applicable when one
feelsthat the failure counts from all of the
intervals are useful in predicting future
counts. The second approach is to be used
when it is fet that a Sgnificant change in the
failure detection process has occurred and
thus only the last m —s + 1 intervals are
useful in future failure forecasts. The last
aoproach is an intermediate one between the
other two. Here it is fet that the combined
failure counts from the first s = 1 intervals
and the individud counts from the remaning
ae representative of the fallure and detection
behavior for future forecasts.

6.2.1.2 Schneidewind Assumptions

The assumptions to the Schneidewind model
are:

. The number of failures detected in one
interval is independent of the falure count
in another.

. Only new falures are counted.

. The fault correction rate is proportiona to
the number of faults to be corrected.

. The software is operated in a similar
manner as the anticipated operationa usage.

. The mean number of detected failures

20
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decreases from one intervad to the next.
. The intervals are dl the same length.

. The rate of falure detection is proportiond
to the number of faults within the Program
at the time of test. The failure detection
process is assumed to be a nonhomoge-
neous Poisson process with an exponen-
tidly decreasng falure detection rate. The
rate is taken to be of the form

d; = aexp(-i)

for the ith intervdl wherea > 0 and b> 0 are
the congtants of the modd.

6.2.1.3 Schneidewind Structure

Two parameters are used in the moddl: a,

which is the falure rate a time m=0, and B,
which is a proportionality constant that

dfects the failure rate over time (i.e, smal B
implies a large falure rate; large B implies a
small failure rate). In these estimates: mis
the last observed count interval; s is an index
of time intervals, Xy is the number of
observed failures in interval k, Xs.; isthe
number of falures observed from 1 through
sl intervals, Xgm is the number of observed

fallures from interva s through m; and Xp =
Xs1+ Xsp. The likelihood function is Then

developed as

logL = X,u[log X,y = 1- l0g(l- exp(~Bm))]
+X 1| log(1 - exp(—B(s - 1)))]
+X,m[log(1 - exp(~))]

m-s

-B Y (s+k=1X, i
k=0

This function is used to derive the eguations
for estimating aand B for each of the three
approaches described earlier. In the equa-
tions that follow, a and P are estimates of the
population  parameters.
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Parameter Estimation: Approach 1

Use dl of the failure counts from interval 1
through m (i.e., s=l). The following two

equations are used to estimate B and a,
respectively.

l Xk+1
exp(B)-1 E‘k

exp Bm

~ 1- exp(~Pm)
Parameter Estimation: Approach 2

Use falure counts only in intervals s through
m(.e,1 <s<m). The following two

equations are used to estimate B and o,
respectively. (Note that approach 2 is
equivaent to gpproach 1 for s = 1)

| m-s+1 X
k k+s
BN (TR

Bxsm
1-exp(—P(m—s+1))

Parameter Estimation: Approach 3

o=

Use cumulative falure counts in intervals 1
through s-| and individual failure countsin
intervals sthroughm (i.e,, 2< s<m). This
approach is intermediate to approach 1 which
uses al of the data and approach 2 which
discards “old” data. The following two

equations are used to estimate p and a,
respectively. (Note that approach 3 is
equivalent to gpproach 1 for s = 2))

(s— DX Xsm mXp,
exp(B(s~1))~1 +exp(B) -1 exp(Pm)~-
t-s

= z(s"'k_ DX 4k
k=0

I .
1 = exp(—fm)

CCPYRIGHT 1999 Anerican Institute of Aeronautics and Astronautics
July 15, 1999 13:28:13

ANSI/ATAA R-013-1992

Mean Square Error Criterion

The Mean Square Error (MSE) criterion can
be used to select one of the three approaches
by finding the optimal value of s. The MSE
computes the sum of the squared differences
between model predictions and actua
cumulative failure counts x(i) in the range s <
I < m. The following equation applies to
approach 2 above. For approach 1 and
approach 3, <.

3 [a/ {1 exp(-Bli - s+ 1) ~xG)]

MSE ==t
m-s+1

Thus, for each value of s, compute MSE
usng the above formula Choose s equd to
the value for which MSE is smallest. The

result is an optimal triple(B, a, s) for your

data set. Then apply the appropriate ap-
proach to your data.

6.2.1.4 Schneidewind Limitations

The limitations of the model are the
following:

. It does not account for the possibility that
fgiltejées in different intervals may be
releted.

. It does not account for repetition of
failures.

. It uses intervals of equa length.

. It does not account for the possibility that
falures can increase over time as the result
of software modifications.

These limitations can be ameliorated by
configuring the software into versions that
represent the previous version plus
modifications. Each version represents a
different module for reliability prediction
purposes: the model is used to predict
reliability for each module.
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6.2.1.5 Schneidewind Data
Requirements

The only data requirements are the number of
errors, f; i=1,.... m, per testing period.

Although a data base is not required, it would
be very useful to create and maintain a
religbility data base for severd reasons input
data sets could be rerun, if necessary;
religbility predictions and assessments could
be made for various projects; predicted
reliability could be compared with actual
relidbility for these projects. This data base
would allow the model user to perform
severd useful andyses to see how wel the
mode is peforming; to compare reiability
across projects to see whether there are
development factors that contribute to
reliability; and to see whether reliability is
improving over time for agiven project or
across projects.

6.2.1.6 Schneidewind Applications

The magor modd gpplicaions ae described
below. These are separate but related uses of
the model that, in total, comprise an
integrated  reliability  program.

. Forecasting: Forecasting future failures,
fault corrections and related quantities
described in section 6.2.1.7.

. Control: Comparing forecast results with
pre-defined goals and flagging software
that fails to meet those goals.

. Assessment: Determining what action to
take for software that failsto meet goals
(e.g., intensify ingpection, intensify
testing, redesign software, revise process).
The formulation of test strategiesisalso
part of assessment. Test strategy
formulation involves the determination of:
priority, duration and completion date of
testing, allocation of personnel, and
dlocation of computer resources to testing.

6.2.1.7 Reliability Forecasts

Using the optimd triple (o,B,s) which were
given in section 6.2.1.3, various reliability
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forecasts can be computed. The approach 2
equations are given where T > s. For
approach 1 and approach 3, s=l and T 2 1,
where T is preferably execution time but can
be labor time or cdendar time.

. Timeto detect atotal of F failures, when

the current time is t and X(t) falures have
been observed

Te(t) =
log[a { (a = B(F(t) = x(v)) / B] “t-s + 1)
for a> B(F(t) + X(t))

. Forecasted Number of Failures after time T

F(T)=(a/ [3)[1 - exp(—P(T s + 1))]

. Maximum Number of Falures (T = o)
Fleo)=0a/B

. Maximum Number of Remaning Failures,

forecasted a time t, after X(t) falures have
been observed

RF(t) = a / P-X(t)

. Faults Corrected after time T

C(M) = (o B)[1 = exp(-B((T = s+ 1) A1)
where At is the mean lag in correcting faults
dfter falures have been observed. (At can
be esimated from the data)

. Time to correct C faults

Tc= At+[(log[oc/(oc—BC)])/B]+s—1
for a>BC

. Outgtanding Faults Remaining a time T

N(T) = KT) - C(T)

. Outstanding Fault Correction Time

ATy =[tog((NBexp(B(T - s+1)) /@) + 1)/8
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where N is the number of faults to correct
darting at time T.

. Outganding Fault Time

The predicted time for the number of
outstanding faults to reach the value N is

TN = [(log[(a exp(BATy ) - 1)/ BN]) / B] +s-1

6.2.1.8 Schneidewind
| mplementation Status and Reference
Applications

The model has been implemented in
FORTRAN by the Naval Surface Warfare
Center, Dahlgren, Virginia as part of the
Statisticall Modeling and Estimation of
Reliability Functions for Software
(SMEREFS). It can be run on an IBM PC (or
comgaible) or DEC VAX ad is avaladle on
DOS diskette or magnetic tape, respectively.

Known applications of this mode ae

IBM, Houston, Texas. Reliability

rediction and assessment of the on-board
ASA Space Shuttle software [SCHN92]

. Nava Surface Warfare Center, Dahlgren,
Virginia  Research in  reiability prediction
and andyss of the TRIDENT | and Il Fire
Control Software [FARR91]

. NASA JPL, Pasadena, California:
Experiments with multi-model software
reliability approach [LYU92]

. Hughes Aircraft Co., Fullerton, Cdifornia
Integrated, multi-model approach to
relidbility prediction [BOWES7]

6.2.2 Recommended Model:
Generalized Exponential M odel

6.2.2.1 Generalized Exponential
Objectives

Many popular software reliability models
yiedld smular results. The basc idea behind
the generalized exponential model is to
simplify the modeling process by using a
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gngle set of equations to represent models
having exponentid hazard functions.

The generdized exponentid mode  contans
the ideas of severa well-known software
rlidbility models. The man idea is tha the
falure occurence rate is proportiond to the
number of faults remaning in the software.
Furthermore, the fallure rate remans constant
between failure detections and the rate is
reduced by the same amount after each fault
is removed from the software. Thus, the
correction of each fault has the same effect in
reducing the hazard of the software. The
objective of this modd is to generdize the
forms of severa well-known modes into a
form that can be used to forecadt:

. Number of failures that will occur by a
given time (execution time, labor time or
cdendar time)

. Maximum number of failures that will
occur over the life of the software

. Maximum number of failures that will
occur after a given time

. Time required for a given number of
fallures to occur

. Number of faults corrected by a given time

. Time required to correct a given number of
faults

6.2.2.2 Generalized Exponential
Assumptions

The basic assumptions of the Generalized
Exponentid Modd  ae

. The falure rate is proportiond to the cur-
rent fault content of a program.

. All falures are equdly likdy to occur and
ae independent of each other.

. Each fallure is of the same order of severity
as any other falure.

. The software is operated in a similar
manner as the anticipated operational usage.
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. The faults which caused the failure arc cor-
rected ingtantaneoudy without introduction
of new faults into the program.

6.2.2.3 Generalized Exponential
Structure

The Generdized Exponentid Structure begins
with a smple, but relatively generd, form for
the software hazard function:

2(x) = K[Eo - E¢(x)]
where

x = atime or resource variable which
gauges the progress of the project.

E; = thenumber of faultsin the program
which have been found and corrected
once x units of time or effort have
beenexpended

K = a condant of proportiondity; failures

per resource or time units, per fault
ining

Inspection of this equation shows that the
number of remaining faults, Er, is given by

Er=2(x) / K = [Eq - Ec(x)]

Note that this equation has no fault generation
term; it assumes that no new faults which will
lead to failures are generated during program
debugging. More advanced models that

Eo = theinitiad number of faults in the include fault generation are discussed in
program which will lead to failures. [MUSAS87] and [SHOOS3].
It can also be viewed as the number _
of failures which would be Many models in common use can be
experienced if testing continued represented by the above set of equations
indefinitely. with various assumptions regarding the
Table 1 Common Reliability Modds that Fit the Generdlized Exponentid Form for the
Falure Rate Function
MODELNAME | ORIGINAL HAZARD |  PARAMETER COMMENTS
FUNCTION EQUIVALENCES
Generdized  Form K[E, - Ec(x)] .
Exponentid  model K'[Eo/ It - €c(x)] g.=Fc/Ir Normdized with
SHOOT2 respect to Ir, the
[ ] K=K'/Ir number of ingtructions
Jdinski-Moranda OIN-G-1) g =I§ épplied a ]Ehe
=kg iscovery of an error
UELL72) Ec=(-1) and before it is
corrected
Basc Modd 1-u/v Ao = KE If the same
[MUSA76] RolL - /ol O_E ° assumptions are used
Vo =Eo to predict m and E,
u=Ec then this model and the
exponentid modd are
the same.
Logarithmic exp (-Op) Ao =KE Basc assumption is
[MUSAS3] hoexp (01 E, - Ec(,s that the remaining
— Eqexp (-01) number of errors
= EoXp -OH. decreases
exponentidly.
24
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parameters and the form that the fault
correction function, Eq(x), takes. Some of
these models are summarized and compared
in Table 1. In the original development of
each modd in this table, one or more time or
resource varidbles were used. In retrospect,
dl of the models can, in generd, be phrased
in terms of any of the time or resource
variables given in Table 1. Thus, unless
dated to the contrary, the use of a specific
time or resource varisble does not differen-
tiste one model from another.

Given the data defined in section 6.2.2.5,
etimation of any of the modd parameters
given in Table 1 reduces to a problem in
datisticdl parameter estimation [HOEL7 1] or
[SHOO90a]. There are three basic methods:
moments, least squares, and maximum
likelihood.  Although the origina de-
velopments of the various models or some of
the computer tools avalable to support these
models may have used only one or two of
these methods, dl three are gpplicable to each
of the models.

The smplest method of parameter estimation
is the moment method. Consider the gener-
dized form with its two unknown parameters
K and E,. The classica technique of moment
estimation would match the fiit and second
moments of the probability digtribution to the
corresponding moments of the data A dight
modification of this procedure is to match the
first moment, the mean, at two different
vaues of x. Tha is, letting the tota number
of runs be n, the number of successful runs
be r, the sequence of clock times to falure t,
t2, ..., tp.y @nd the sequence of and the se-
sence OF clock times for runs without failure
1, Ta,. ... Tryieds,

Failures(X) n-r
Z(X) * Hours (X) - H (6.1)

where

Equating the unified form equation with
equation (6.1) a two different values of time
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yields

2(x,) = an—l 1 =K[E,~Ec(x))] (62

z(x,) = EHL;Z- =K[E, = E(x,)] (6.3)

Simultanaeous solution of these two sets of
eguations, equations (6.2) and (6.3), yields
estimators denoted by A, for the parameters.

Be -2 ()

_z{xy
Y o)

E =

]

_ Z(xg Eo(xy ~ 2(xy Eg(xy

- 2(xa) - 2(x)

(6.4)

k= Z(x1z

Fo -Ec x1)

__Ax2)=7(x)
B Ec(xlz) -E, (;2) ©3)

Since dl of the parameters of the five modes
in Table 1 are rdated to Eo and K by smple
transformations, equations (6.4) and (6.5)
along with the transformations (parameter
equivaences) hold Thus these equations can
be used to obtain moment estimates for al the
models. For example, we could start using
the Musa Basc modd of Table 1 and apply
the moment estimate procedure to determine

A, and ¥, in an analogous fashion to what

was done in equations (6.2) and (6.3). More
simply, we could use equations (6.4) and
(6.5) and the transformation v, = E, and [,

= KE, to obtain

§ =F - 2(x9)E () = z(x) E, (x
o =B ) )
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Z(xg)-2(x1)
Ec(xl) -E, (XZ)
2(x2)Eq(x1) = 2(x; )Ec(x2)

2(xz) - 2{x)

5 2x2)Be(x1)—2(xs)Ec(xp)
’ Ec(x1) - Ec(x2)

Which ae the moment estimation equations.
Similar results can be obtaned for the other
models in Table 1. More advanced edtimates
of the model parameters can be devel oped
usng leest squares and maximum likelihood
esimation theory ([SHOO90a].

6.2.2.4 Generalized Exponential
Limitations

The generalized exponential model has the
folowing  limitations:

. It does not account for the posshility that
each falure may be dependent on others

. It assumes no new faults are introduced in
the fault correction process

. Each fault detection may have a different
impact on the software when the fault is
corrected. The Logarithmic mode  handles
this by saying that earlier fault corrections
have a greater impact than later ones.

. It does not account for the posshility that
fallures can increase over time as the result
of program evolution, athough techniques
for handling this limitation have been
developed.

6.2.2.5 Generalized Exponential
Data Requirements

During test, a record will be made of each of
the total of n test runs. The test results
include the r successes and the n-r failures
dong with the time of occurrence measured
in terms of clock time and operationa
execution time, or test time if operationd tests
are unavailable. Additionally, there should
be a record of the times for the r successful

26
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runs. Thus, the desired data is the total
number of runs n, the number of successful
runs r, the sequence of clock times to failure
t1, t2, . tgr a0 the sequence of clock times
for runs without failure Ty, Tz, . ... Tr. All
the times should be for actud or smulated
operation; however, if only test time is
available, that should be recorded. A
description is needed along with the data
describing whether is represents  operation,
simulated operation, or test and the
circumstances and conditions governing the
input data. If possible, a similar set of
operationd data should be recorded.

6.2.2.6 Generalized Exponential
Applications

The Generdized Exponentid  Model(s) tend
to be optimistic. It I1s applicable when the
operational profile is “regular,” and the
software debugging process is well
controlled (i.e, the fault correction process
tends to be complete and not error prone)

The magor mode applications are described
below. These are separate but related uses of
the model that, In total, comprise an
integrated  reliability  program.

. Forecasting: forecasting future failures,
fault corrections, and related quantities
described in section 6.2.2.7.

. Control: comparing forecast results with
edefined goas and flagging software that
als to meet those gods.

. Assessment: determining what action to
take for software that fails to meet goals
(e.g., intensify inspection, intensify
testing, redesign software, revise process).
The formulation of test strategiesis aso
pat of the assessment. Test Srategy for-
mulation involves the determination of:
priority, duration, and completion date of
testing, allocation of personnel, and
dlocation of computer resources to testing.

6.2.2.7 Reliability Forecasts

Besdes the egtimate of the totd number of
faults given by E,, other estimates are:
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. Edtimated time to remove the next m faults

Ny

j=n+l IA(o(l‘;:o -+

. Edtimate of the current failure rate at time
1=K, (fio exp(—f(ot))

For other quantities that can be estimated, see
the references listed in paragraph 6.2.2.8.

6.2.2.8 Generalized Exponenential
Implementation Status and Reference
Applications

The Generdized Exponentid Modd has not
been implemented as a standalone model.
The many models it represents, however,
have been implemented in several tools
including SMERFS from the Navd Surface
Warfare Center, Dahlgren, VA, Software
Reliability Modeling Program  (SRMP)  from
the the Center for Software Reliability in
London, England, and RELTOOLS from
AT&T. See Appendix B for detals.

While the generdized exponentid modd hes
not been used widdy, many of the specific
modelsthat it covers as special cases have
been applied successfully. See the following
for example applicaions:

. Jelinski Z.and Moranda, P. B., “Software
Reliability Research,” W. Freiberger,
Editor, Satistical Computer Performance
Evaluation, Academic Press, New York,
pp. 465-484.

. Shooman, M. L. and Richeson, G,
“Reliability of Shuttle Control Center
Software,”  Proceedings Annal  Rdiability
and Maintainabilty Symposium, January
1983, pp. 125-135.

. Kruger, G. A., “Vadldation and Further
Application of Software Rdiability Growth
Models,” Hewlett-Packard Journal, April
1989, pp. 75-79.
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6.2.3 Recommended Model: Musa /
Okumoto Logarithmic Poisson
Execution Time M ode

6.2.3.1 Musa / Okumoto Objectives

The logarithmic Poisson is especidly applica
ble when the testing is done according to an
operationd profile that is very nonuniform in
nature. Ealy fault corrections have a larger
impact on the falure intensity function than
later ones. The failure intensity function
tends to be convex with decreasing dope for
this situation. Thus a logarithmic Poisson
model may be very appropriate for this
circumstance.

If one is ds0 interested in relating cdendar
time congderations (eg., completion of tedt-
ing, resource management, etc.) to reliability,
the logarithmic Poisson is the only non-ex-
ponentid model that can do this at this time.

Condderations relating to computer utiliza-
tion, personnel level, and current and
projected failure rate trade-offs can be
performed to bdance rdiability considera
tions with time and resource congtraints.

The number of failures occurring over an
infinite amount of time is unbounded for this
mode! LMUSA87]. It is especidly agpplicable
when high nonuniformity is experienced in
the operationd profile. The bdief is that as
one detects the earlier faults a greater
reduction in the failure intensity is experi-
enced. With a highly non-uniform profile
exhibited, early fault corrections make a more
subgtantiad impact on the falure behavior of
the software than later ones. This behavior
of the falure intengty can be more adequately
modeled by a logarithmic Poisson approach.

If there is a decreasing effectiveness of the
repar process, then this modd can yiedd an
unbounded number of failures even though
the number of faults may be finite

6.23.2 Musa / Okumoto
Assumptions

The specific assumptions for this mode are:

. The software is operated in a smilar
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manner as the anticipated operationa usage.
. Falures are independent of each other.

. The falure intendty decreases exponentia-
ly with the expected failures experienced.

Note: There are two consequences of the
third assumption. First, the expected number
of falures Is a logarithmic function of time.
Second, the model may report an infinite
number of fallures.

6.2.3.3 Musa / Okumoto Structure

From the model assumptions we have:

h(z) = falure rate function after t amount of
execution time has been expended

= Ao exp[-0u(0)

The parameter A, is the initial failure rate

function and @ is the failure rate decay pa-
rameterwith 0> 0.

Using a reparameterization of g, = 67! and
By = A48, then the maximum likelihood

estimates of B, and B, are shown in

FMUS_A87] to be the solutions of the
ollowing  equations:

P n

0=p,— <
° mh+m%i
n
P lz 1 Iltn

) Bl i=1 1+ ﬁltn ) (1+ Bltn)ln(l"' Bltn)

Here t, is the cumulative CPU time from dtart
to the current time. Over this period, we
have observed a total of n failures. Once
maximum likelihood estimates are found for
B, ad B, the maximum likelihood edimates
for 6 and A, are, using the invariance prop-
ety of such estimators.

b= -rl;ln(1+ Bltn) and
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xo=ﬁoﬁl
6.2.3.4 Musa /! Okumoto Limitations
Two limitations are:

. The fallures may not be independent of one
another.

. The failure intendty may rise as modifica-
tions are made to the software.

6.2.3.5 Musa / Okumoto Data
Requirements

The required data is either:
. The time between falures, i.e, the X j's.

. The time of the fallure occurrences, i.e,

|
ti=EXJ'

i

6.2.3.6 Musa / Okumoto
Applications

The mgor mode applications are described
below. These are separate but related
applications that, in total, comprise an
integrated  reliability  program.

. Prediction: Esimating future falure times,
fault corrections, and related quantities
described in Musa's book [MUSAS87].

. Control: Comparing prediction results with
pre-defined goals and flagging software
that fails to meet gods.

. Assessment: Determining what action to
take for software that fails to meet goals
(eg., intengfy inspection, intensfy test-

ing, redesign software, revise process).

The formulation of test drategies is dso a

part of assessment. It involves the de-

termination of: priority, duration and com-
pletion date of testing, and allocation of
personnel and computer resources to

tegting.
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6.2.3.7 Reliability Forecasts

In their book, Musa, lannino, and Okumoto
[MUSA87] show that from the assumptions
above and the fact that the derivative of the
mean value function is the falure rate
function, we have

~

- A
AMr)=+—""—
@) AT+l

fi(t)= mean number of falures experienced
by the time 1 is expended

_1 (s
= 6111(1091 +1)

The esimaes of additiond reliabili? mea:
sures are provided in the references listed in
paragraph 6.2.3.8.

6.2.3.8 Musa / Okumoto
| mplementation Status and Reference
Applications

The model has been implemented by the
Navd Swface Warfae Center, Dahlgren, VA
as part of SMERFS. It can be run on any
computer sysem with a FORTRAN compiler
and is avalable upon request.

This model has dso been implemented in the
set of programs written by AT&T (see
Appendix B for detals).

This modd has been applied widdy. See the
following for example applications:

. Musa, J. D., lannino, A., and Okumoto,
K., Software Reliability: Measurement,
Prediction, and Application, New York,
McGraw-Hill,  1987.

. Musa, J. D. and Okumoto, K., “A
Logarithmic Poisson Execution Time
Model for Software Reliability Measure-
ment,” Proceedings of the 7th Internationa
Conference on Software Engineering,
Orlando, FL, 1984, pp. 230-238.

. Ehrlich, W. K., Stampfel, J. P., and WU,
J R, “Application of Software Réiability

13:28:13
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Modeling to Product Quality and Test
Process,” Proceedings of the IEEE/TCSE
Subcommittee on Software Reliability
Engineering Kickoff Meeting, NASA
Headquarters, Washington, DC, April
1990, paper 13.

6.2.4 Recommended Model:
Littlewood / Verrall Model

6.2.4.1 Littlewood / Verrall
Objectives

The intention of the Littlewood / Verrall is to
model the doubly stochastic nature of the
software failure process. There are two basic
sources of uncertainty which need to be taken
into account when software fails and fixes are
dtempted.

In the first place there is uncertainty about the
naiure of the operationa environment: we do
not know when a certain input will show
itself, and in particular we do not know
which inputs will be selected next. Thus,
even if we had complete knowledge of which
inputs were falure-prone (and of course this
is never the case), we il could not tell with
certainty when the next one to induce a failure
would be received. All software reliability
models recognize this source of uncertainty,
and it is often presented mathematicdly by a
simple Poisson process: i.e., it is assumed
that failures occur purely randomly. This
means the time to next falure, for example,
will have an exponentid digtribution.

The second source of uncertainty concerns
what happens when an attempt is made to
remove the fault that caused the falure. The
aforementioned models that assume that the
process of failures is localy purely random,
It is this uncertainty tha governs the changes
in the failure rate as debugging proceeds:
l.e, it determines the nature of the reliability
growth. There is uncertainty here for two
main reasons. In the first place, it is clear
that not all the faults contribute the same
amount to the unreliability of a program.
Some contribute a greater amount than
others. If the software has failed because a
fault has been detected that contributes a large
anount to the overdl rdiability, then there
will be a correspondingly large increase in the
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reliability (reduction in the falure rate) when
this is removed. In the second place, we can
never be sure that we actualy have removed a
fault successfully; indeed it is possible that
some new fault has been introduced and the
reliability of the program made worse. The
result of these two effects is that the falure
rate of a program changes in arandom way
as debugging proceeds. there will likey be a
downwards jump in this rate at each fix
attempt, but this is not certain, and the size of
the jump in unpredictable.

The Littlewood / Verrall model, unlike the
other models discussed, takes account of
both of these sources of uncertainty in the
failure process - that due to basic unpre-
plictabilit¥ of the environment which profers
inputs for execution, and that due to an
intrinsic uncertainty of the effects of the hu-
man activities during debugging.

6.2.4.2 Littlewood / Verrall
Assumptions

The following assumptions apply to the
Littlewood / Verdl modd:

. The software is operated during the collec-
tion of fallure data in a manner that is
amilar to that for which predictions are to
be made; the test environment is an accurate
representation  of the operational
environment.

. The times between successive falures are
conditionaly independent exponentid  ran-
dom variables i.e, locdly (between fail-
ures) the fallure process is purely random.

. The fixing process involves uncertainty
represented by alowing the successive
faillure rates, following successive fix

dtempts, to be a sequence of independent
random variables.

6.2.4.3 Littlewood / Verrall
Structure

This model treats the successive rates of

occurrence of failures as fixes take place, as
random variables. It assumes

P(t; IAi =\)= )‘-ie-liti
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The sequence of rates A; is treated as a
sequence of independent stochastically
decreasing random variables. This reflects
the likelihood, but not certainty, that a fix will
be effective. It is assumed that

” }b(i!—lc—\V(i)Xi

_ (i)
8(7‘1 ) = (@)

forA;>0

which is a gamma distribution with pa-
rameters o, y(i).

The function (i) determines the religbility
growth. If, asis usually the case, y(i) isan
increasing function of i, it is easy to show
that A; forms a stochadtically decreasing se-

guence. For this model afix may make the
program less reliable, and even if an
Improvement takes place it is of uncertain
magnitude.

By setting (i) to either B, +B4ji o r
B, + Byi2 and iminating a, Littlewood and
Verdl present a method of estimating B, and
p; based upon maximum likelihood. By
diminating a from the likeihood equations,
I.e., the estimate of a can be expressed asa
function of the estimates of the other two
parameters. See [FARRS83,LITT73] for
detals. The maximum likeihood caculaion
needs to be done using a numerical
optimization routine which is available in
commercialy available software, such as
those found in Appendix B.

Least squares estimates of the parameters
(ot,B,,8;) ae found by minimizing:

S(a,Bo,Bl)=i[xi-[;‘@]z

i=l
See [FARRS3] for further details.

6.2.4.4 Littlewood / Verrall
Limitations

The primary limitation as with dl Bayesan
analysis is the specification of the prior
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density function g(A;). A secondary limita-
tion of the Littlewood / Verdl modd is that it
cannot estimate the number of faults
remaning in the software (the edtimate may

be infinite depending on the (i) function).

6.2.4.5 Littlewood / Verrall Data
Requirements

The only required data is ether:
. The time between falures, i.e. the Xj's.

. The time of the failure occurrences, i.e.
i
= zXI
1

6.2.4.6 Littlewood / Verrall
Applications

The Littlewood / Verdl Modd (or Inverse
Polynomial Moddl) is a conservative and
pessmigic modd. It is gpplicable when the
operetiond profile is non-uniform and even
irregular, especially when the software
debuging process is imperfect (i.e, the fault
correction process tends to be incomplete or
error-prong), This model has the capability
of adjusting the parameters to reflect the
Stuation.

The maor mode applications are described
below. These are separate but related uses of
the model that, in total, comprise an
integrated  reliability  program.

. Forecasting: Forecasting future failures,
fault corrections, and related quantities
described in section 6.2.1.7.

. Control: Comparing forecast results with
pre-defined goals and flagging software
that fails to meet those gods.

. Assessment: Determining what action to
take for software that fails to meet goals
(e.g., intensify inspection, intensify
testing, redesign software, revise process).
The formulation of test drategies is dso
part of assessment. Test strategy formula
tion involved the determination of: priority,

13:28:13
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duration and completion date of testing,
dlocation of personne, and dlocation of
computer resources to testing.

6.2.4.7 Reliability Forecasts

Egimation of rdiability and other associated
terms is via substitution of the parameter
estimates into appropriate expressions. An
estimate of the Mean Time To Failure,
(MTTF), is:

MTTE = B(X;) = M

a—1
The expresson for falure rate is:

. é
IO

(Note that the failure rate expression is a
co_ntinuousI%/_ decreasing function during
periods of falure-free working, representing
the greater confidence that comes from such
evidence)

The reliability function is:
R() = BT, > 1) = §(i) [+ Y@

In all of the above expressions, (i) and 6.
are the estimates of the two respective pa-
rameters from section 6.2.4.3.

For other quantities that can be estimated, see
the references listed in paragraph 6.2.4.8.

6.2.4.8 Littlewood / Verrall
I mplementation Status and Reference
Applications

The model has been implemented as part of
the SMERFS. It can be run on any computer
system with a FORTRAN compiler and is
avallable upon reguest.

This mode has dso been implemented in the
Software Reliability Modeling Programs
(SRMP) a the Center for Software Reliahility
in London, England by Dr. Littlewood and
his associates of Reliability and Statistical
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Consultants, Ltd. This program package
runs in a PC environment.

The Littlewood/Verrall model has been ap-
plied widdy. See the following for examples
of applications:

. K. Kanoun, J. Sabourin, (1987),
“ Software Dependability of a Telephone
Switching System,” Proceedings 17th
IEEE Symposum on Fault-Tolerant Com-
puting (FTCS-17), Rittsburgh, PA.

. Mdlor, P., (1986), “State of the Art Report
on Software Reliability,” Infotech, London

. Abdd-Ghdy, A. A., Chan, P. Y. and Lit-
tlewood, B., (1986), “ Evaluation of Com-
peting Software Reliability Predictions,”
IEEE Transactions of Software Engineer-
ing, SE-12(9), 950-967

6.3 Experimental Approaches

Several improvements to the software
rliability models described in the previous
sections have been recently proposed. Firg,
researchers a the City Universty of London
have devised a method of recalibrating the
moddls [BROC92] to reduce their biases (see
section 6.1.1.2). These findings to date
suggest that the recalibrated models yield
consstently more accurate forecasts than the
uncaibrated models. Second, work has aso
been done in combining the results from two
or more models in a linear fashion to increase
predictive accuracy [LYU92, LU92]. This
work suggests that such combinations yield
more accurate results than individua models.
The advantage of combining modd results is
the smplicity with which the combinations
ae formed — the modds in the combination
are executed individualy, with only the
results being combined. Third, efforts to in-
corporate  software complexity metrics into
reicbility modds [KAFU87, KHOS91], and
to gauge the effects of different types of
testing (e.g., branch testing, data path
testing) on rdiability growth [MATH92] are
being investigated. Findly, the use of neurd
networks for software reliability parameter
edimation is being invesigated [KARU92].

Although these efforts show promise in
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increasing the forecasting accuracy of
software reliability modeling, there is not
sufficient evidence to classify them as
recommended practice a this time. They are
included here to indicate some of the current
avenues of investigation. Further experience
with these methods may lead to their being
fclassified as recommended practice in the
uture.

7.0 SOFTWARE
RELIABILITY DATA

A vaiety of applications for software reia-
bility measurement were described in Section
S of this document. Section 6 provided a list
of sdlection criteria as well as a st of modds
for edimating the rdiability of the software
product. Data collection provides the
foundation on which both of these sections
depend. This section addresses (1) a
procedure for collecting data, (2) two data
types, (3) the relationships between the two
types, and (4) the AIAA data base hierachy.

7.1 Data Collection Procedure

The following nine steps can be used to es
tablish a software reliability data collection
process:

. Sep 1. Edablish the objectives.

The first step in planning to collect data is to
determine the objectives of the data and what
data items will be collected. Data collection
does involve codt, so each item should be ex-
amined to see if the need is worth the cogt.
This should be done in the context of the
planned application or gpplications of soft-
ware reliability engineering. If the item is
guestionable, consider aternatives such as
approximating the item or collecting it & a
lower frequency. Look for possibilities of
collecting data items that can serve multiple
purposes. If this careful examination is not
performed, the unnecessary burden in effort
and cost on the project can result in the
degradation of dl daa or even the abandon-
ment of the effort.

. Step 22 Plan the data collection process,
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It is recommended that al parties (designers,
coders, testers, users, and key management)
participate in the planning effort. The data
collectors must be motivated if qudity data is
to be collected. Present the gods of the data
collection effort. Relate it to their direct
persond  benefit.  This will insure that all
parties understand what is being done and the
Impact it will have on their respective
organizations.

It is suggested that a first draft data collection
plan be presented as a starting point. The
plan should include topics such as.

. What data items will be gathered?
. Who will gather the data?

. How often will the data be reported?
. Formats for data reporting (e.g., electronic
Spreadsheet, and paper forms)

. How is the data to be stored and processed?

. How will the collection process be
monitored to ensure integrity of the data?

Solicit identification of problems with the
plan and desired improvements. Elicit the
participation of the data collectors in the
solution of any problems. It will provide
them an opportunity to provide new ideas and
insight into the develolc])ment process.
Support will be gained by having the parties
that will be affected as active participants.

Recording procedures should be carefully
consdered to make them as smple as poss-
ble. Solicitation of data from project mem-
bers can reduce effort and make collection
more reidle.

For the failure count method, the data
collection interval should be selected to
correspond to the norma reporting interval of
the project from which data are being
collected (eg., week, month) or an integra
multiple thereof. This will facllitate obtaining
data on the level of effort devoted to the
software under test (person-hours and
computer hours) which must be correlated
with the rdiability data

13:28:13
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. Step 3: Apply tools.

Avallahility of tools identified in the collec-
tion process must be considered. If the tools
are not commercialy available then time
needs to be planned for ther development.
Furthermore, the amount of automatic data
collection must be congdered. To minimize
the impact on the project’'s schedule, auto-
mated tools should be consdered whenever

possible.

When decisons ae being made to automate
the data collection process for ether of the
two types of data one needs to weigh certain
factors. These include:

. Availability of the tool. Can it be pur-
chased or must it be developed?

. What is the cost involved in either the
purchase of the tool or its development?

. When will the tool be avalable? If it mugt
be developed, will its development
schedule coincide with the planned use?

. What impact will the data collection process
have on the development schedule?

. Can the tool handle adjustments that may be
needed? Can the adjusments be completed
in a timey manner?

. How much overhead (people and computer
time) will be needed to keep the data
collection process going?

Once the tool has been developed and imple-
mented, one needs to consider ways of en-
suring the right data are being gathered.
Hexibility dso should be desgned into the
tool, as data collection requirements may
change. Finally, one needs to make some
pe of assessment of not only what the tool
saved in time and resources but dso what the
data collection process gained. Records
could be kept of the number of faults detected
dter the release of the software. This could
be compared with reliability estimates of
similar projects that did not employ this
methodology. Edtimates of reduced mainte-
nance and fault correction time could be made
based upon the estimated current fallure rate.
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For the tool itself, one could estimate the
amount of time and effort that would be ex-
pended if the data had been collected manu-
aly. These statistics could then yield cost
estimates which would be compared with the
procurement and implementation costs of the
automated tool. If the cost of the automated
tool is significantly higher, one certainly
would question the wisdom of developing the
tool. However, even if the costs come out
higher, consideration must be given to future
use of the tool. Once the tool has been
developed it may be easly adapted over many
software development efforts and could yield
sgnificant  savings.

. Step 4: Provide training.

Once the tools and plans are in place, training
of al concerned parties is important. The
data collectors need to understand the pur-
pose of the measurements and know explic-
itly what data are to be gathered.

. Sep 5 Peform trid run.

A trid run of the data plan should be made to
resolve any problems or misconceptions
about the plan. This can save vast amount of
time and effort when the “red thing” occurs.

. Sep 6: Implement the plan.

Data must be collected and reviewed
promptly. If this is not done, quality will
suffer. Generate reports to show project
members, they can often spot unlikely results
and thus identify problems. Problems should
be resolved quickly before the information
required to resolve them disappears.

. Slep 7. Monitor data collection.

Monitor the process as it proceeds to insure
the objectives are met and the program is
megting its established rdiability godls.

. Step 8: Use the data.

Don't wait to the end after the software has
been released to the users to make your reli-
ability assessments. Estimating  software  re-
liability at regular, frequent intervals will
maximize vishllity into the development e&f-
fort, permitting managerid decisons to be
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made on a regular bass.
. Step 9: Provide feedback.

This should be done as early as possible
during the data collection. It is especialy
important to do so at the end. Those who
were involved want to hear what impact their
efforts had. If no feedback is given, you'll
find yoursdf facing the problem dluded to in
the beginning of this section. Namely, the
arties will resist further future efforts
ecause they see no purpose. Again, why
collect data for the sake of collecting it?

7.2 Failure Count Data vs Execution
Time Data

It is generaly acoepted that execution (CPU)
time is superior to caendar time for software
relidbility meesurement and modding. If ex-
ecution time is not readily avalable, approx-
imations such as clock time, weighted clock
time, or units that arc naturds to the applica
tions, such as transactions, may be used
[MUSA87, pp156-158].

The following paragraphs address failure-
count and execution time data collection to
support  the recommended models identified
in Section 6.

7.2.1 Failure-Count Data

Since the recommended models employ the
number of falures detected per unit of time,
these data are usudly readily avalable. Mogt
organizations have some type of configura
tion management process in place. As part of
this process, a procedure for reporting fail-
ures and approving changes to the software is
in place. The software problem reporting
mechanism may be either manual or auto-
matic. In addition, the problem reports may
be stored within a computer data base system
or a manud filing sysem The key is tha the
data can be easly extracted

Make sure tha the problems are redly soft-
ware problems - some organizations use
problem reporting for any type of anomay
and the time recorded on a problem report
may not be the time a which the failure was
experienced, it may be the time in which the
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report was filled out.

Another pitfl to avoid when using problem
reporting data involves forming the time in-
tervals. Remember, the purpose is to model
the number of failures detected per unit of
time within a specified environment. These
units should therefore be consstent in dura-
tion, manpower, and testing intengity.

Usudly the information to check this is not
avalddle. All one has is data on the number
of fallures detected in one period or another.
However, there may have been twice as
many testing personnel in one period than the
other. The only way to find out this infor-
mation is to seek it out. This may involve
taking with the testers or even reviewing old
time sheets covering the period of interest.
Generally, the longer the period of timein
which the fault counts are formed the more
smoothing occurs. Variations within short
intervals of time will be averaged out over the
longer time units.

Data may be gathered a any point within the
development cycle beginning with the system
tex phese. Overdl measurement objectives
will help you determine the rate (failures
reported per week, per month, or per quarter)
a which data is collected. It is suggested that
you start out using the number of failures
reported over the shortest unit of time
consstent with your objectives. If good fits
are not achieved, combine intervals to the
next level. For example: days to weeks, or
weeks to quarters. The smoothing effect
mentioned in the previous paragraph may
help in the modding process.

7.2.2 Execution Time Data

This data may be collected directly or indi-
rectly. Also, it is best to collect, when feas-
ble, the actua execution time of a program
rather then the amount of wall clock time or
sysem active time expended. This is the ac-
tud amount of time spent by the processor in
executing the instructions. Execution time
gives a truer picture of the stress placed on
the software. You could have large amounts
of time expended on the clock but very little
computations may have to be done during
this period. This yields small execution
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times. Thiswould tend to give overly opti-
migtic views of the reliability of the software.
Modeing using execution time daa tends to
give superior results than smple elapsed wall
clock time or sysem active time. However,
the data may be difficult to collect since a
monitor of the actual operating system is
involved. Another source for obtaning this
data is to adjust the wall clock time by a
factor that represents the average computer
utilization per unit of wal clock time.

If the time-between failures (wal clock or ex-
ecution time) is unavalable and only grouped
data (number of failures occurring per unit of
time) is avalable, the time-betweenfalures
can dill be obtaned One way is to randomly
dlocate the falures over the length of the time
interval. Randomization will not cause erors
in estimation for some of the models by more
than 15 percent [MUSAS87, pg.128]). A
second way is the easiest to implement.
Smply dlocate the falures uniformly over
the inteva length. For example, suppose the
interval is three hours in duration and three
failures occurred during this period. We
could then treat the time-between-falures to
be each one hour in length.

Two additional considerations are: (1)
adjusting the failure times to reflect an
evolving program and (2) handling multiple
stes / versons of the software. In the first
studtion, the falure intensty may be under-
esimated in the early stages of the program’'s
development yielding overly optimistic views
of the rdiability. For the second considera
tion, there are multiple versons of the code
being executed at different locations. In
[MUSAS87, pp. 162-176] both considerations
ae addressed.

7.3 Transformations Between the
Two Types of Input

Programs may have the capability to estimate
model parameters from either fallure-count or
time-between-failures data, as maximum
likelihood estimation can be applied to both.
However, if a program accommodates only
one type of data, it IS easy to transform to the
other type.

If the expected input is falure-count data, it
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may be obtained by transforming time-
between-failures data to cumulative time data
and then smply counting the cumulative
times that occur within a specified time

period.

If the expected input is tune-between-falures
data, convert the failure-count data by ran-
domly sdlecting a number of cumuleive fall-

ure times in the period equa to the count and
then finding the time differences between
them [MUSAS87, pp. 143-146].

7.4 The AIAA Repository

The AIAA sponsored the development of a
software  reliahility J)YO]GC'[ repository.  This
repository contains data for both researchers
and practioners dike

7.4.1 Minimum Data Required

The following information represents a mini-
mum subset of data that should be collected
for any software project. It will be found
useful in developing and maintaining local
organization repostories as well.

. Project Data

The data should contain information to iden-
tify and characterize each system and effort
that generates data stored in the database.
Project data should alow users to categorize
projects based on application type, de/sdcgf}
ment methodology and environment e
required reliability or currency. The follow-
ing project-related data are suggested..

. The name of each lifecycle activity (eg.,
requirements  definition, design, code, ted,
operations)

. The start and end date for each life-cycle
activity

. The effort spent (in staff months) during
exch life-cycle activity’

Characterize the development  environment

1 primarily required of resource modeling.

36

(organic, semi-detached, or embedded)?
1. Component Data

For each system component (e.g., subsys-
tem, eement, or module) provide the follow-

ing:

. Software size in terms of executable source
lines of code as well as the number of
comments and the total number of object
instructions

. The source language used

II. Dynamic Failure Data

For each failure recorded the following
information should be tracked:

. The activity being performed when the
problem was detected (e.g., testing,
operdtions, and maintenance)

. The date and time of the failure

. The severity of the falure (e.g., critical,
mgor, minor)

And a least one of the following data items:

. The number of CPU hours since the last
failure

. The number of runs or test cases executed
snce the last failure

. The number of wal clock hours since the

last failure
. The number of test hours test interva
and number of failures detected in the

interval
. Test labor hours since the last failure
V. Fault Correction Data
For each failure corrected with a software fix,

the following information should be
recorded:

2 as referenced in the COCOMO
framework[BOEH81]
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. The date and time the fix was avalade
. The labor hours required for correction

Also record a least one of the following data
items consigtent with the selected data item
from the dynamic falure data list.

. The CPU hours required for the fix

. The number of runsrequired to make the
fix

. The wall clock hours used to make the
correction

Findly, it is important to maintan corporate
knowledge of the software testing and de-
bugging effort. Therefore, have a point of
contact who knows the project write down
the lessons learned and have that person
avalable to answer questions concerning the
data (how they were obtained and how some
of the project specific terminology trandates
to the current terminology).

7.4.2 Input for Practitioners

The above data are for use by practitioners
who are interested in finding projects smilar
to their own projects. It also provides a
guideline for defining data collection re-
quirements when new projects are Started.

7.4.3 Input for Researchers

In addition to the minimum data mentioned in
Section 7.4.1, the AIAA Repository also
contains data for research sudies in software
_relliaél)i lity measurement. These data items
include:

|. Project Data

* Remarks about the development schedule
(e.g., replans, problems, corrective
actions)

* The average dtaff size (in staff hours) and
development team experience (in years)

« The most important requirements, design,

code, test, and configuration management
tools and / or methods used

13:28:13
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. The number of different organizations
developing software for the project

. The Software Engineering Institute (SEI)
index of the development environment and
the assessment method

. The most important tool and model used for
software reliability esimaion

1. Component Data

. The name and model of the development
and target hardware

. Average and peak computer resource
utilization (e.g., CPU busy, memory
utilization, and input / output channel
utilization)

II1. Dynamic Failure Data

. The type of the failure (e.g., interface,
syntax)

. The method of fault / failure detection Se.g.,
inspection, system abort, invalid output

. The unit complexity (e.g., McCabe
Cyclomatic) and sze where the fault was
detected

V. Fault Correction Data

. The type of fix (e.g., software change,
documentation change, requirements
change, no change)
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APPENDIX A

ADDITIONAL SOFTWARE
RELIABILITY
ESTIMATION MODELS

This appendix contains descriptions of

four additional models available to a
researcher or software reiability anayst
for use on projects, that were not

discussed In Section 6 of the

recommended practice. These models
may be useful on projects where the

assumptions of the models recommended
in section sx do not a?ply or the models
in section six do not closely fit the daa

It is recommended to use more than one
model in practice since the computation
time for the anayss of multiple models is
reasonable.

A.1 Duane's Modd
A. 1.1 Duan€e’'s Model Objectives

This model assumes that we are deding with
the times of failures occurrences. The
number of such occurrences considered per
unit of time is assumed to follow a
nonhomogenous Poisson process. This
model was originalela/ roposed by J. T.
Duane who observed that the cumulative
failure rate when plotted against the total
testing time on log-log tended to follow
astraight line. This model has had some
success in its application [DUANG64]. It is
best applied later in the testing phase or
beyond. The cummulative operation of
summing the total number of erors to date
tends to have a smoothing effect and hence
prodmlotes the linear relation present in the
model.

A. 1.2 Duane’'s Model Assumptions
The gspecific assumptions are:

. The software is operated in a similar
operational profile as the anticipated

usage.
The falure occurrences are independent.

13:28:13
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The cumulative number of falures a any
time t, [N(t)], follows a Poisson
distribution with mean m(t). This mean

is taken to be of the form m(t) = AP

A. 1.3 Duan€'s Model Structure

b
If @ = 2‘_:_ is plotted on log-log paper a
draght line-of the form Y = a +bX with a =
In A, b =D, and X = In(t) is obtained.

Maximum likelihood estimates are shown by
[CROWTT7] to be

A=

tn
~ n
R

Zln(tn /)

i=1

where the ¢'s are the observed falure times
in either CPU time or wal clock time and n is
the number of fallures observed to date.

Least Squares estimates for a and b of the
draight line (see previous Structure section)
on log-log paper can be derived using
dandard linear regression estimates.

A. 1.4 Duan€e's Model Data
Requirements

The model requires the time of the failure
occurrences, I.e.tj 1=1,....n

A.2 Brooks and Motley’s I1BM
Model

A.2.1 Brooks and Motley’s Model
Objectives

This model attempts to account for the fact
that the software may be developed
incrementdly so that al of the modules may
not be under test at the same time.
Additionally, the amount of the program
under test could require different expen-
ditures of resources (e.g., staff-hours or
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CPU-hours expended). This modd was
designed to handle these sStuations and can
therefore be applied a ether the system or
module level. For consstency with the other
models in this recommended practice, only
the system level model and parameter
estimates are presented here. See [FARRS83]
for a general treatment of these model
variaions,

A.2.2 Brooks and Motley’s Model
Assumptions

The number of faults detected in a given test
period i follows ether a Poisson distribution
or abinomial distribution. Specificaly the
assumptions  are;

The number of software faults detected
on each test occason is proportiona to
the number of faults a risk for detection
which is proportional to the remaining
number of faults.

This proportiondlity factor or probability
(denoted as ¢ for the binomid modd and

¢ for the Poisson) of detecting any fault
during a specified unit interval of tedtin
IS constant over all test occasions an
independent of fault detection.

The faults reintroduced in the correction
process are proportiona to the number of
faults detected.

One congderation when usng this modd is
the second assumption of a constant fault
detection probability. If this probability is
changing dradticaly over time another of the
models conddered in this document may be
more appropriate. The fluctuaion in the fault
detection probability can sometimes be seen
in the initid tegting phase as the testers are
learning the system. The S-shaped model
discussed in the next section may be more
apropriate in this case.
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A. 2.3 Brooks and Motley’s Model
Structure

Binomial Model

Suppose J; is the index set of those modules
tested on occasion i, N is the totd number of
faults in the software program at the
beginning of testing, w; is the weight
assgned to module j, g is the error detection
probability given in the second assumption
above and a is the probability of correcting a
fault in the software without introducing new
faults. Then the binomid model over the ith
test occasion (i = 1,....,.K) can be shown to
be [BROOS0]:

N;
I

P(X =n;)= ( ]q?i (1- qi)ﬁi“ﬂi

where

N; = the number of faults remaining and
subject to detection a the start of the

ith test occasion

- Z(W]N - aNi_l,j)
el
g = [1-(1- q)Ki]where K; is the system
test effort on the #th test occasion

= probability of fault detection in the i
test occasion

and
J;

n; = 2 nij
j

= totd number of faults found in the it
tet occason over the modules being
tested.

For the Binomial model the maximum
likelihood estimates of the parameters can be
shown to solve the following system of
equations.
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K7 [ N. 7 )
0= |In| =——[+K;In(1-q) |}, w;
s\ LNi—nj Jjel;

K T N. ] 3
0=Y|In| =——|+K;In{1-q) | YNy ;
i\ LNi—nj Jiel;
0= —2r 1 | _K.N.

E&l_(l—Q)Ki o

Poisson M odel

Suppose J; is the index set of those modules
tested on occasion i, N is the tota number of
faults in the software program at the
beginning of testing, w; is the weight
assgned to module j, ¢ is the error detection
probability given in the second assumption
above for the Poisson and a. is the probability
of correcting a fault in the software without
introducing new faults. Then the Poisson
model over the it# test occasion (i = 1,...,K)
of length % can be shown to be [FARRS83]:

N.6. )% o~ Niti
P(X =ni)=(Nl¢1) ©

ni!

where

N; = the number of faults remaining and
subject to detection a the start of the

ith test occasion

> (wiN - 0Ny )

&

fi = [1-(1-¢)t‘]

= probability of fault detection in the itk
test occasion where t; is the tota time

spent for the ik test occasion

and
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n = Nifi

total expected number of faults

The maximum likelihood estimates for the

Poisson model parameters N, ¢ and a are

found as the solution of the followmg three
equations:

0-3| 3w #-0)

S

=1 jel; 1

og;th,[ ey

For both the binomid modd and the Poisson

it is best to fix the vaue for a (the probability
of correcting faults in the code without
introducing new ones), as the three smulta
neous equations are extremely difficult to find

the solutions for. If a is fixed the three equa
tions in both cases reduce to two equations
with the last equation in each set disappear-
ing. Brooks and Motley suggest choosing
vaues for a ranging from 0.85 to 1.00.

A.2.4 Brooks and Motley’s Model
Data Requirements

The data required to implement ether of these
two mode forms are:

The length # of the i test occasion.

The tota number of faults, (n;), found in

the ith test occasion over the modules
being tested.

The modules under test during the i*# test
occasion.

The probability of correcting faults in the
code without introducing new ones, a
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A.3 Yamada, Ohba, and Osaki’s
S-shaped Rdiability Growth
M odel

A. 3.1 S-Shaped Reliability Growth
Model Objectives

This model assumes tha we are deding with
the times of failures occurrences. The
number of such occurrences considered per
unit of time is assumed to follow a
nonhomogeneous Poisson process. This
model was proposed by Yamada, Ohba, and
Osaki [YAMAS3]. It is based upon God and
Okumoto’s Nonhomogeneous Poisson
Process (NHPP) [GOEL79]. The difference
is that the mean vaue function of the Poisson
process is sshaped in naure to dlow for a
learning curve effect. At the beginning of the
testing phase the fault detection rate is
relaively fla but then increases exponentidly
as the testers become familiar with the
program Findly it levels off near the end of
testing as faults become more difficult to
uncover. This behavior is best fitted by an s-
shaped model; hence the basis of their modd.

A, 3.2 S-Shaped Reliability Growth
Model Assumptions

The basc assumptions are:

The software is operated in a similar
operational profile as the anticipated

usage.

The falure occurrences are independent
and random

. The initia fault content is a random
vaiale

The time between failures (i » 1) and 1
depends on the time to failure (i = 1).

Each time a falure occurs, the fault which
caused it is immediately removed, and no
other faults are introduced.

A. 3.3 S-Shaped Reliability Growth
Model Structure

The specific modd is.

44

P(N¢= n) = probability that the cumulative
number of faults up to time t,
N, isequa to n

M(t)" exp(~M(1))

nl
wheren =0, 1,...
with
M(t)=  the mean value function for the

Poisson  process

al - (1+ bt)ed) with both a, b
>0

and with initid conditions

M(0) = 0
M(eo) = a

The fault detection rate is therefore:

dMT(t) = abZte

Letting nj, i = I,....k be the cumulative
number of faults found up to time tj, i =
Ly K, the maximum likelihood estimates
for a and b are shown to sdisfy the following
pair of equations.

Ny

T (1 ~(1+ f)tk)e'f"k )

and

o & |(mi- ni—l)(tie—bti - ti—le—bti-l)
ﬁtﬁe_ - Z = - =\ —bis
i=1 (1 +bt;_; )e -1 (1 +bt; )e i

This model does an excellent job in both
fitting and given s&t of data and for prediction
when this sshaped phenomenon is observed.
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34 S—ShaBed Reliability Growth
Model Data Requirements

The model requires the failure times tj, i = 1,
.. k asinput data.

A. 4 Jdlinski / Moranda
Rdiability Growth Modé

A. 4.1 Jelinski / Moranda Model
Objectives

The basic idea behind this model is that
failure occurrence rate is proportiond to the
number of faults remaning, the rate remains
condant between falure detections and the
rate is reduced by the same amount after each
fault is removed. The last idea means that the
correction of each fault has the same effect in
reducing the hazard rate of the program.

A.4.2 Jelinski / Moranda
Assumptions

The basic assumptions of the Jelinski-
Moranda Modd ae

. The rate of failure detection is
proportiona to the current fault content of
a program.

All falures are equdly likey to occur and
are independent of each other.

. Each falure is of the same order of
severity as any other failure.

The falure rate remains constant over the
interval  between fallure occurrences.

The software is operated in a similar
manner as the anticipated operational

usage.

The faullts ae corrected ingtantaneoudy
without introduction of new faults.

A .4.3 Jelinski / Moranda Structure

Using these assumptions the hazard rate is
defined as:

z(t) = ¢[N = (i -1)]

13:28:13
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where ¢ is any point between the discovery of
the (i — 1)th falure and the ith failure. The

quantity ¢ is the proportionality constant
given in the first assumption. N is thetotal
number of faults initialy in the program.
Hence if (i = 1) faults have been discovered
by time ¢, thereare N = (i = 1) remaining
faults. The hazard rate is proportiond to this
remaning number. As a fault is discovered
the hazard rate is reduced by the same

amount, ¢, each time.

If X; =1t - t.1, 1.€. the time between the
dlscovery of the ith and the (i —1)st fault for
i = |,..,n where t, = 0; using the fourth
a$umpt|on the X,'s are assumed to have an
exponentia disribltion with rate z(t). That
is

£(X;) = N = (i = D]exp(-f[N - (i = D]x;)

This leads to the maximum likelihood

estimates of ¢ and N as the solutions to the
following two equations:

n

- (ZXJ zn“ (i-1X;

N-5—| X (-
;Xi i=l

A.4.4 Jelinski / Moranda Data
Requirements

4 1 n
Eﬁ—(i-l)_A 1 (". I)X]

The modd may use ether of the following
items as input data for the parameter
estimation:

. The time between failure occurrences,
I.e, the X;'s.

. The total duration_of the failure

|
= Y Xj
=

occurrences, i.e.
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APPENDIX B

AUTOMATED SOFTWARE
RELIABILITY
MEASUREMENT TOOLS

This appendix provides alist of the known
software reliability measurement tools
avalable to practitioners and researchers. It
IS summarized from an AIAA specid report,
An Evduation of Tools for Modding Soft-
ware Reliability, and contains only those
tools with survey information available a the
time of publication. It should be noted that
additiona tools are ariving on the market and
these tables represent the status as of this
printing.
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Supplier and | Naval Surface Warfare Reliability and Statis- Daa & Andyss Center
contact Center  (NSWC/DD) tical Consultants, Ltd for Software (DACS)
Dr. William Farr Dr. Bev Littlewood DACS
NSWCDD Ceter for Software RDD/COED
Dahlgren, VA Reliability Griffiss AFB, NY
22448-5000 Northampton Sg. London 13441
(703) 663-4719 EC1 VOHB, England (315) 336-0937
(+44 71 477 8420)
(+44 71 477 8585) FAX
Tool Name Statiticdl Modeling and | Software Reliability GOEL
Estimation of Reliability | Modeling Programs
Functions  for ~ Software (SRMP)
(SMERFS)
Models Littlewood/Verrall Musa/Okumoto Goel/Okumoto
Musa Basic Duane
Musa/Okumoto Jelinski/Moranda (M)
Geometric Goel/Okumoto
Execution Time NHPP Bayesian JM
Generalized Poisson Littlewood/Verrall
NHPP Littlewood
Brooks/Motley Keiller/Littlewood
Schneidewind Litlewood ~ NHPP
S-Shaped
Hardware Cyber 1707760, DEC Sun  Microsysem Work-  |IBM PC
VAX, IBM PC (some dation or IBM PC com-
versons require a mah patible with a mah
coprocessor) coprocessor
Minimum DEC VMS, MS DOS 30, MS DOS 3.0 MS DOS 211
Operating Cyber Opeding Sysem
System
Minimum 256 K 500K 256K
Memory
Current 4.0 1.0 1.0
Version
Release Data | Version Jun-90 May-88 Nov-87
Release Date
| Original Date Oct-83 May-88 Nov-87
Distributed 300 Unknown 68
coples
Development FORTRAN '77 FORTRAN Unknown
Language
Program De- | Commercial X X X
veloped for Use
Project
Specific Use
Menu-Driven X X
Program Command- X
itructure Driven
Integrated X X
System
Stand  Alone X
Tool
Cost ($) $5,000 $50
48
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Supplier and |AT&T Bdl Laboratories [AT&T Bell Lebordoies | Software Qudity  Tools
Contact
Dr. William Everét AT&T |Dr. William Everett AT&T |Thomas L. Wilson
Bdl L&oratories Rm 2L- |Bel Laboratoies Rm 2L- | Software Quality Tools
503 503 2000 West Pak Drive
Cranfords  Commer  Road Crawfords Comer Road Suite 200
Holmdel. NJ 07733-(908) |Hohndel, NJ07733-(908) |Westborough, MA
949 2334 949 2334 01581
(508) 366-5045
Tool Name Program for Software RELTOOLS (aPC-based Software  Qudlity
Reliability and System vason cdled SRE tools |Management System
Test Schedule Estimation |is currently in beta test) (SQMS)
Models Musa Basic Musa Basic Musa Basic
Musa/Okumoto Musa/Okumoto
Hardware CDC 600077000, IBM Any platform running Sun SPARC dation
3607370, DEC VAX, UNIX sydem V operating
Univac 1100. Honeywell |sysem (IBM PC for SRE
6000 tools)
Minimum Unknown See above sun OS 4.1,0pen
Operating Windows 2.0
System
Minimum 100K 100K 8 Mgy
Memory
Requirements
Current 1.0 2.0 12
\ersion
Release Data | Current 1977 1988 Mar-91
Version
Released
Original 1977 Sept-87 Ott-90
Version
Released
Distributed >100 13 >10
coples
Developmenl FORTRAN FORTRAN '77 C
L anguage
Program De- | Commercial X X
veloped for Use
Project X
Specific Use
Menu-Driven
Program Command- X X
Structure Driven
I ntegrated
System
Standalone X X
Tool
Cost ($) Public  Domain $300 $25,000
49
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Supplier and | AT&T Bdl Laboratories | CEP-Systemes MBB
Contact Deutsche Aerospace
Munich
Dr. William Everett AT&T | Mr. Sylvain Mege CEP- | Mr. R. Borez
Bel Laboratories Rm 2L- | Systemes MBB Deutsche  Aerosp.
503 150 me Vauqudin space Comm. & Propul.
Crawfords Comer  Road Immeuble Europolis Ba. [ System Div. Mal Code
Hohndel. NJ 07733 (908) | A KQ114
o419 2334 31081 Toulouse Cedex D8000 Munich 80
France Germany
Tool Name SRE Toolkit SoRel SOFTREI
Models Musa Basic 4 modelsimplemented Shooman
Musa/Okumoto
Hardware Any platform running Macintosh [l with a mah |[IBM PC
Unix Sygem V or coprocessor
MS/DOS
Minimum see above Macintosh MS DOS
Operating
System
Minimum 120K 200K 256K
Memory
Requirements
Current 1.0 1.0 2.0
Version
Release Data | Current May-91 May-91 1989
Version
Released
Original May 1991 May-91 1990
Version
Released
Distributed > 200 Unknown 1
copies
Development C Pascal Pascal
Language
Program Commercial X X (al documentation in
Developed Use French)
for
Project X
Specific Use
Menu-Driven X X
Program Command- X X
Structure Driven
Integrated
System
Standalone X X (needs Excel'M for X
Tool plotting)
Cost (%) Free with attendance at 3- | 30,000FF(3,000FF for a Unknown
day training seminar non-profit_organization)
50
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APPENDIX C

DETERMINING SYSTEM
RELIABILITY

Reliadility andyss involves gpproximations,
assumptions, and often the use of generic
rather than field specific data. Thus,
estimates are often off by a factor of 1.5 or 2.
For example, suppose that the system
requirements call for a hardware MTTF of
1,000 hours and a software MTTF of 1,000
hours (yielding a system MTTF of 500
hours). Conservative design procedures
would be to design for 2,000 hours MTTF
for both the hardware and software, so that
even if reality is worse than the model
assumptions, there is a built in safety factor
of 100%. Thus, neither hardware nor
software models need give exact predictions
to be important analysis techniques.
[SHOO9%0a].

This appendix describes methods for
combining hardware and software  religbility
predictions into a system prediction.

C. 1 Predict Rdiability for
Systems Composed of
(Hardware and Software)
Subsystems

A smple way of deding with the rdiability of
a system composed of hardware and software
is to make a sructurd model for the system.
The most common types of structural models
in use are reliability block diagrams
(relidbility graphs) and reliability fault  trees.

|nscanner . computer

i

ANSI/AIAA R-013-1992

If the hardware and software modes of failure
ae independent, then the sysem reliability,
Rs, can be treated as the product of the
hardware and software reliability, and a
separate model can be made for the hardware
and software. Consider the following
example

A ralroad boxcar will be automatically
identified by scanning its serial number
(written in bar code form) as the car rolls past
a maor station on a railroad system.
Software compares the number read with a
data base for match, no match, or partial
match. A smplified hardware graph for the
system is given in Figure C.I, and the
hcard;/vare reliability, R(HW), in Equation
(C.1).

R(HW) =RS * RC*RD * RP (C.1)

The software graph is shown in Figure C.2,
the <oftware reliability, R(SW), in Equation
(C.2), and combining these equations, the
(s,é%e)m reliability R(SYSTEM) is given in

R(SW) =RF *RL *RD * RA
R(SYSTEM) = R(HW) * R(SW) (C3)

In a more complex case the hardware and
software are not independent and a more
complex model is needed. For example
consider a fault tolerant computer system
with the computers, Cl, C2, C3, the same
software on each computer (SW1, SW2,
SW3), and an output majority voter (answer
is the mgority output) [SHOO90], Appendix
H]. Since the software [SW] is the same

(C2)

disk

|
torage — printer

Figure C. 1 The Hardware Modd of a Ralroad Boxcar Identification System

scanner pj database _>|| d
decoding look-up

sto%tge > ca?mp_?ﬂson e %ri_nter
gorithm river

Figure C.2 The Software Modd of a Railroad Boxcar Identification System
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Cl p—»{ SWI1"

" | vOling | COMMOnN
€2 —b= SW2 algorithm software
c3 —b SW3"

I

Figure C.3 A Rdiability Grgph for a Fault Tolerant Computer System

Note that such models work best a a high level where there will be a

modest number of subsystems.

most of the failures [say 90%] due to design
faults, errors in specification, etc. are com-
mon to al processors and appear in saries in
agraph model. Since the computers do not
have the same internd dtate, say 10% of the
software falures (SW”) are independent as is
shown in Figure C.3 and the reliability
equation, Equation (C.4), is written in terms
of the subsystem probabilities, Pr.

R = Pr [(Cl * SWI" + C2 * SW2"
+Cc3SW3" * v* SW] (C4)

The hardware reliabilities for such system
models are derived from test and operationa
data on the number of equipment falures for
each subsystem and the total number of hours
of test. Similarly one would take data on
system failures traceable to the software,
however, one would need to count these
falures as sysem level falures to use these
models. This is the reason why such models
can not be gpplied & too low a level.

More detailed micro models have been
formulated and described in the literature,
however while they appear theoretically
sound, unlike the macro models previoudy
described, they have not been applied to
actud projects as yet. These micro models
which have been developed [SHOOT76,
LLOY77, LITT79, LAPR84, HECH89]
focus on a simple representation of the
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software  dructure. As an example consider
the following modd based on representing
the software by a structure with i mgor paths
[SHOO83, FREE88, SHOO90b]

During operation (execution) of the software,
each of these paths is selected with frequency
f;, and the execution time of each case is t;.
There is a certain probability that in executing
case i, a residual software error will be
encountered which results in system failure.
This falure probability is denoted by q;.

Development of the model [(SHOO76,
SHOO83) pp. 378-384] leads to an
expresson for the system fallure rate which
depends on the fj, t, and q; parameters.

i
2f19;

2(0) =_-‘_EIT
;fj(l—-—zl)tj
J:

(C.5)

Note that the symbol for executed time of
path i has been given a prime, t;, to dif-
ferentiate it from the sysem operating time t.

If thegi values are small, asthey may bein
most cases, then Equation (C.5) smplifies to:
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i
2.554;

20) =5 (C.6)

PR
=i

We can interpret Eq. (C.6) in a simple
fashion. The falure rate z(0) Is just the rtio
of the weghted falure probabilities and the
weighted running times (to failure or
success), yielding failures per hour.

Note that the failure rate function z(0) in
Equation (C.6) isindependent of operating
timet. Thus, substituting z(0) Iinto the
st_zwddgrd relidbility expresson [SHOO90a],
yi

R(t) = expl[~z(0)dx] = exp(-z(0)t) (C.7)
The mean time to fallure, MTTF, is given by:
MTTF = [R()dt (C.8)

Since z(0) is independent oft, subgtitution of
(C.7) into (C.8) yidds
-1
RZ0)

C .2 Predict Rdiability in the
Engineering Phase

C .2.1 Software System

MTTE (C.9)

Software  religbility prediction in  engineering
phase is bascaly the same as measuring the
software  rdligbility in testing and operaiona
phase. Since during the engineering phase,
the software is only considered as part of the
whole system (usually represented by a few
blocks in the overdl sysem block diagram),
software reliability usually affects system
reliability partially. However, in the case
where software is involved in the operaion
of a critical section of the system, reliability
of that software portion will have immediate
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impact on the sysem reliability. Therefore,
it Is important to separate the reliability
prediction for critical software portions from
that for noncritica portions.

Another important issue of predicting
software rdiability in the engineering phase is
to correctly identify the expected operationd
profile, especidly when the functiondity of
the software depends on certain assumptions
made by the hardware, and made by the
interfaces in between hardware and Software.
There might be some discrepancies which
will not be caught by the software integration
testing, and would have to be resolved In the
sysem engineering phase.

C.2.2 Systems Composed of
Hardware and Software Subsystems

In concept this is essentidly the same task as
that discussed in Section 5 for the Test and
Operational Phases;, however, during the
System Engineering Phase, we do not have
operational or test data for our current pro-
ject. We must rely on historic data recorded
In raw form or distilled into a reliability
edimate for the hardware and software within
the a&éstem. In the past the field of hardware
reliability has been quite successful in
collecting, analyzing, and recording field
failure data for failure rate estimates of
various component reliabilities. (The two
bet known hardware reiability manuas are
[MIL-HDBK-217E] and [NPRDS§5]).

Such vaues are generally used for estimating
the reliability of new hardware locating
similar components or equipments in the
historicd data base. One of the objectives of
Lhis AlAA project is to evolve such a data
ase.

In the interim and even after such a data base
IS established, one will often need to scale
historicd data to adjust for more logicd and
thorough development procedures. The
following technique can be helpful in this
regard [SHOO90b].

One is often faced with the task of making
software  reliability predictions a the time a
proposal is being prepared to respond to a
request for proposa (RPP).
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This terminology comes from the procedures
used in government contracting; however,
there are direct analogies in commercial
contracting and perhaps less formally (but
maybe they should be more formd? for in
house projects. Strictly speaking, one can
not estimate the reliability of software which
he or she knows nothing?1 about, but a proper
RFP will contain enough information so that
the designer can liken the proposed project to
a previous one. If the pardle is very close,
then the only problem is to find appropriate
reliability data on the previous project. More
commonly, there are differences among the
two projects and one must devise a technique
for mapping or extrapolating the data. The
following method and example is one which
can be used in such circumstances.

Cdl the new project to be predicted ‘Project
A” and the ﬁrior project “Project Z.” The
number of hours of testing during four
phases of Project Z was avalable: (1) prior
to site integration: 2,000 hours, (2)
integration & Ste 4,320 hours, (3) reliability
demongtration test: 700 hours, and (4) fied

operation: 6,000 hours. The corresponding
estimates of the number of erors removed
duringgthese four phases were; 900, 800, 14,
and 33. Thus, we can cdculate a falure rate
over each of these four intervds of time by
dividing the number of errors removed by the
number of test hours.

It was postulated that this datawould fit an
exponentidly  decreasing falure rate modd,
and to test this hypothess, the falure rates
were plotted versus cumulative test hours on
semi-log paper. The results are shown as the
four horizontal bars in the accompanying
figure, and the data points are shown at the
center of the intervals. The solid line in
Figure C4 is fitted by eye and shows fairly
good confirmation of the exponential
assumption. If the new project is to be very
much like the previous one the solid line can
be used to estimate how reliability can be
traded off versus test time in Project A.

More then likely, Project A will differ from
Project Z, and in the example given, the
requirements were that Project A be

Failure Rate
per 1000 Hours

10000

1000

Known project
Failure rate = exp(-5.3x10

100

10

10 | predicted Project

0.1

Failure rate = 0.2 exp(-5.3x10 # ) hours -
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~
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much more reliable than Project Z. Project Z
did not have srong software rdiability and
guality control focus, plan, estimation or
tracking procedures (in other words, it was a
normal project). The dotted line in Figure
C4 was proposed as what might be achieved
if Project A had a srong rdidbility focus and
reliability tracking. It was based on the
following  assumptions.

a. A drong qualitative and quantitative
reliability plan could deliver software to the
integration phase with only 20% as many
errors as Project Z.

b. The errors in Project A will decline a the
same rate as those did in Project Z, (even
though there are fewer errors present).

Of course a eJ:)Iete proposal would have to
include a detall deﬂ:nptlon of the rdidbility
and quality control procedures to be used and
whether the expected reductions in falure rate
could meet the “gods of the estimaie” Also,
one would clearly fed much better about such
an edimate if in addition to Project Z there
were data on prior projects W, X, and Y as
well and the results and circumstances of
these projects corroborated the estimate.

OCOPYRIGHT 1999 Anerican |Institute of Aeronautics and Astronautics
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C.3 Select Reliability Objective

Although we are conddering sdection of a
relidbility objective here as an application in
itsdlf, it is often pat of another application.
In the latter case, it is part of the step of
parameter  determination.

There are at least three principal methods
used in establishing a falure intensity
objective for the software component of a
system: system balance, release date, and life
cycle cost minimization [STAR92]. Further
discussion of these methods is given in
[MUSAS87, pp 194-197].

C.4 Predict Reliability of Different
Designs (Architecture)

The models given in Section C.I| dlow one to
explore the results of a change in architecture,
by examining the effect of structure on the
religbility expresson. One can formulate the
model of the two (or more) candidate
software architectures, and see how the
changes effect the software reliahility.
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APPENDIX D

RESEARCH OPPORTUNITIES

This appendix will discuss some of the
known open research problems. It is not
intended to be an exhaustive list of such
problems.

D. 1 Improving Parameter Estimation

Maximum likelihood estimation of parameters
based on falure data teken during execution
ields reasonable results, but there appears to
e considerable room for improvement.
Edimates are frequently biased and there is
frequently congderable disperson as well.

Joe and Reid studied the problem for an
exponentid  binomid mode  (smilar to  but
not precisely the same as the exponentia
Poisson modd described in this document)
[JOE85]. Littlewood investigated the use of
adaptive prediction to compensate for
estimation deficiencies [LITT86]. Further
investigation into new methods of estimation
may fruitful. Modification of edimators
based on measures of prediction error, an
adaptation of the Littlewood approach, could
be a useful approach.

This research will require fallure data to be
supplied through the Nationa Repostory. It
will also require software reliability engi-
neering programs in which different estima
tion procedures can easly be dipped in and
out in modular fashion.

D.2 Fault Density Prediction

Accurate means of predicting fault densty are
needed if we are to predict the parameters of
the exponentid mode so tha it can be used
prior to program execution. At the present
timg, investigators have identified some of
the factors that appear to affect fault dengty,
based on a moderate number of projects.
[TAKAB8S5] found that specification change
activity, average programmer skill, and
thoroughness of design documentation are
sgnificant. They account for about 60% of
the variation in fault density, so there are
clearly other factors that are operative.

13:28:13
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Further research is needed to address other
possible factors and to verify the consistency
of influence of the factors over a larger group
of projects. The data required here includes
number of faults identified during the life of
the software, size of the software in delivered
executable source lines, and measures of
those factors that are likely to influence fault
density. Data is needed over a wide variety of
projects. The programs required are expected
to be standard satistica packages.

D .3 Fault Exposure Ratio

The fault exposure ratio [MUSAR87] is the
ratio of the initid falure intendty a the dtart
of system test to the product of the linear
execution frequency and the number of
inherent faults. The linear execution
frequency is the average indruction execution
rate divided by the object program size. It
relaes reiability to fault densty.

Fault exposure ratio may be constant or close
to it. This must be verified over a larger
sample of projects. If it is not congtant, then
the factors that influence it need to be
identified and the relationships determined.

This research requires data from a variety of
projects on initid falure intensty a the dart
of system test, number of faults, average
instruction execution rate, and object program
size. It may also require information on
factors that could influence the fault exposure
Eati?. There is no particular need for software
ools.

D.4 Fault Reduction Factor

The fault reduction factor [MUSAS87] is the
ratio of net fault reduction to failures
experienced as time of execution approaches
infinity. We need to determine its vaue over
a wide variety of projects and determine
factors (if any) that affect it.

The man research requirement is data on net
faults removed and failures experienced. If
factors that affect fault reduction factor are
identified, we need to determine ther values.
There is no need for software tools.
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D .5 Resour ce Usage Parameters

Information on resource usage parameters is
needed on a wide variety of proH'ects Either
they will be constant, or they will vary with
factors which must be determined.

The requirements for research here are data
on resource usage (failure identification
effort, failure resolution effort, computer
time) as a function of execution time and
failures experienced. Data will also be
required on the values of any variables that
may affect resource usage. The program tools
required will probably only be standard
regresson  routines.

D.6 SRE and Unit Test

There is a good chance that software
reliabilitK edimation could be extended to unit
test. There are two problems that must be
addressed. First, the size of the sample of
failures may be solved in grouping the
failures of a number of unitsin some way.
Second, the operationd profile for the unit
must be related to the system operational
rofile in some way or one must compensate
or the difference.

The data and software tools needed for this
dudy are not presently defined; they must be
determined in the course of the study.

D .7 Homogeneity of Failure Severity
Classification

Some evidence indicates that the proportion
of falures in each falure classfication on a
given project remans approximately constant
over the life of the project.

Checking this hypothesis will require failure
data from a variety of projects, with the
execution time and severty classfication of
fallure recorded.

D ,8 Relationship Between Reliability
and Problems Found During
| nspection

If the inspection process happens during the

coding phase of the life cycle ﬂex. code
audits) the program is too unstable to fit a
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reliability model as formulated in this
document. These models attempt to fit the
fault discovery process within a given
environment. If the environment is rapidly
changing, as would be the case during the
coding phase, attempting to do reliability
prediction is like trying to hit a rapidly
moving target. It is not impossible but it is
extremely difficult. If the code audit process
is relatively stable, say over a short period of
time or perhaps within a given module of the
program, we might be able to fit and
subsequently use our model predictions.
However they would only be appropriate in a
very restrictive sense. Usually the code is
undergoing such rapid changes that what we
attempt to model today is not the same
program  tomorrow!

Relidbility edimation and prediction during
the coding phase or earlier is an open
research  question. Some suggestions can
however be put forth. All of these
su?gestions will not guarantee good results if
followed. These ae only recommendations
based upon the experience of software
developers. The firgt suggestion is to use past
data of gmilar projects. One might compare
the fault detection rates during the inspection
process of the two similar efforts and then
using the operational reliability of the past
effort adjust it for the given effort. This
could provide avery crude estimate of the
eventua reliability of the current program.

Again extreme care needs to be exercised in
extrapolating from one effort to another.
Two development efforts may be similar (ex.
number of lines of code, personnel,
language, or intended use), however you will
never have an identical development
environment.

Ancther suggestion is to employ some of the
measurements provided during the coding
phase in the IEEE Standard Dictionary of
Measures to Produce Reliable Software
(IEEE Std 982.1-1988) and the
accompanying |EEE Guide for the Use of
|[EEE Standard Dictionary of Measures to
Produce Reliable Software (IEEE Std 982.2-
1988). That effort attempted to define
metrics that can be used throughout the
software life cycle to measure both the
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resulting  product and the software process
thet developed it. Here the emphass is on
insuring that the effort stays on track towards
itsreliability goals so that when it reaches
integrated testing or beyond the software
models related in this document will confirm
tha the reliability objectives have been mest.
[SIEF89] provides a basis for choosing the

proprigte measures for use. Some exam-
ples of metrics that can be employed during
the audit process are:

a Fault-days - The number of days the fault
has resided in the code. This could
indicate problems in the process. Faults
ae not being discovered ealier in the life
cycle when software impacts are not as
great.

b. Error Distribution « For the faults
discovered in the inspection process what
types of errors (requirements, design,
etc) are they. This again could indicate
where management needs to address
changes in the software engineering
Process.

c. Man-hours per major defect detected -
How much effort was expended in the
inspection process to uncover a given
fault. If this is too large (say in respect to
Smilar  development processes) the audit
process may need to be modified.

The reader is encouraged to refer to those
documents for additiond information.
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If the inspection occurs during the integration
phase as pat of the overdl test dtrategy for
the verification and vadidation of the software
(V&V), the models considered in this docu-
ment can be agpplied, assuming the software
has by that time reached arelatively stable
date. However again care must be considered
in extrapolating the religbility predictions be-
yond this environment, especialy to the op-
erationd phase. Generaly, when code audits
ae peformed, extensve coding reading is
done. The modules are inspected each in turn
with the same level of intensity. Hence
modules that would not be used very often in
the operationa phase (or not even a dl un-
less certain anomalies occur) are inspected at
the same level as ones that occur on a regular
basis. Thus faults are found at a rate that
would be higher than what would normally
occur within the operational phase. If this
were the case, smaller Mean Time Before
Falures (MTBF) would be predicted by the
models than what would be observed opera
tiondly. One only needs to be aware of this
danger. If one Is modeling the inspection
fault detection rate simply to determine
whether more manpower need to be alocated
or what modules need to undergo more ex-
tensve testing, then this would be an appro-
priate use of the models.

It is hoped that further research will provide

better aﬁproaches for prediction and estima-
tion within this important phase.
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APPENDIX E

USING THE AIAA
RECOMMENDED PRACTICE
FOR SOFTWARE
RELIABILITY

Section 5 outlined an eleven step generic
procedure that can be talored to a specific
project's needs. The steps are as follows:

1. Identify the application under
investigation

ify the requirement
Allocate the requirement
Define failure
Charecterize the operational
environment
Select tests
Sdect model(s)
collect data
. Determine model parameters
10. Vdidate and sdect best model
11.  Peform andyss

N

[SaE Nt}
—

00N o

This document limits its scope to the period
from the dtart of testing until system release,
0 while the first three steps are called out,
they are not expanded upon in Section 5.
I;utu_lre research is intended to address them in
etal.

Section 5 identifies congderations for each
gep in the procedure. The following section
outlines those considerations and describes
the actions taken during “Project A”. It
addresses each step of the generic procedure
beginning with step 4 - Define Falure.

E. 1 Define Failure

Section 2 of this recommended practice
defines falure as “The inability of a system
or sysem component to perform a required
function within specified limits” Since this is
a generd definition, it is recommended that a
project-specific  definition be negotiated by
the testers, developers, and users prior to the
dtart of test.

Prior to testing the Project A software,
severd meetings were hed to define failure.
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Developers, testers, and users decided to
define falure in terms of the activity that the
system would be performing (i.e.,
development, testing, or operations), and to
categorize the falures by their severities (i.e,
critical, maor, or minor). The meeting results
ae shown in Table EL

Other considerations outlined in the AIAA
Recommended Practice related to failure
definition that require resolution are:

. Are failures counted if it is consciously
decided not to seek out and remove the
cause of a particular falure?

. Are duplicate failures counted each time
they occur?

. Is each failure in a series that is triggered by
data degradation counted individualy?

Responses were no to the first question,
sometimes to the second, and yes to the third.
The rationale for answering no to the first
guestion was that deciding not to correct a
known fault is equivalent to changing a
sysem requirement. Duplicate failures that
were encountered using a Smilar test case, or
during regression testing were not counted;
however, if the duplicate faillure was
encountered using a different operational
scenario the failure was counted.  Answering
yes to the third question ssmplified data
collection since detailed investigation into
each fallure was not required prior to usng
the data for parameter estimation.

E.2 Characterize the
Operational Environment

The AIAA Recommended Prectice defines the
operational environment in terms of the
sysem configuration, the system evolution
during test, and the system’s operational
profile. The system configuration refers to
the arrangement of the system’s components.
System evolution refers to changes in the
design and implementation during tes and the
operationa profile(s) refers to the redive
frequency that each function of the software
is executed. Each item must be considered
when planning and executing the software
relidbility — andyss.
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Development

Critical

L I

to correct.

A failure that inhibits processng in more than one area and cannot be
circumvented. Additiondly, a falure that requires reboot of a workstation

resore the operation.

A ftalure that Inhibits processing or produces erroneous output limited to
one area. Also, a failure that requires the operator to logoff then logon to

Anomadlies that are dight and can be circumvented.

litic & Inhibits one or more applications from being tested or a falure that brings
the system to a hat and cannot be circumvented. Additiondly, a failure
that requires reboot of a workstation to correct.

Major

[nhibits an entire processor of an application from being tested or prohibits
completion of a test case by blocking other test functions. Also, a failure
that requires the operator to logoff then logon to restore the operation.

Minor

Falures that do not directly affect completion of a test function and are
conddered to have no effect in an operaiona environment.

Operaions

Cnitical

A talure that drasticaly reduces the usefulness of the system In support of
current operations and cannot be circumvented. Additiondly, a failure that
requires reboot of a workstation to correct.

Major

A falure that reduces the usefulness of one or more mgor system
functions used in current operations, and cannot conveniently be
circumvented. Also, a fallure that requires the operator to logoff then
logon to restore the operation.

Minor

Failures that occur during a mission that are considered to have no effect
or to be inggnificant. but are to be corrected in a future release.
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Table E. 1 Falure Definitions Used During Project A

E .2.1 System Configuration

Prior to the J)roject, the system was a
bascdly centrdized sysem. All processing
occurred in mainframe computers. The
processed data was sent to ground controllers
for interpretation. Project A incorporated
aspects of distributed computing into the
facility by adding a Locd Area Network and
workstations at the users’ work areas. The
workstations contain software that alows the
user more analysis capability while
mantaning the capability from the origind
system.

The distributed nature of Project A raised the
following two concerns for the anayss.

Should the failure data be separated by
hardware processor and should the failure

rate of each component be tracked

62
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independently?

How should the fact that different
processors execute at different rates and
are busE\;e different amounts during a
mission handled?

The Project A team decided that it was only
possble to track falures a the system level
and not at the component level (i.e., any
software component failure was a system
failure), thus it was not necessary for the
rdigbility andyss to separate the falures by
component. Clearly, this simplification
compromises the accuracy of the system
rlidbllity estimate by ignoring the digtributed
nature of the software components.
However, a rdiability block diagran can be
congtructed that would improve the accuracy
of the estimate by taking into account the
system architecture and functional paths.
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To handle the second issue Project A
collected system active test hours rather than
execution time on each processor. While
Section 5 recommends collecting processor
execution time for completing a software
reliability analyss. Unfortunately, it was not
posshle to measure execution time explicitly
throughout the test on each processor. The
system active time was defined as the time the
system was processing mission simulated
data. It did not include downtime due to
failures, reconfi%urations, or other
anomalies. It does include the time the system
processors spend doing Input / Output and
waiting for data. It should be noted that
performance measurement prior to delivery
indicated that the host operates at slightly
over 80% CPU busy, and multiple
workstations are continuously executing
during a mission. Thus, system activity is an
gpproximation to execution time.

E.2.2 System Evolution

Software reliability measurement models
assume that the program is stable except for
those changes that result from debugging.
Project A evolved due to integration of parts
during the test period. Three major releases
were provided to the test team during the test
phase. The first major release contained
308,350 source lines of code (SLOC). The
second release contained an additional
486,802 SLOC for a 795,152 SLOC total.
The third release added 105,722 SLOC for a
total of 900,874 SLOC. Note that this
evolution was anticipated prior to testing and
all three releases contained relatively
independent functionality. Furthermore, the
system was stable for the fina 450 active test
hours.

Section 5 does not provide significant detail
on how to handle this situation. It simply
provides a reference. The solution for Project
A was to make sure the tool they used had the
capability to adjust the failure times based on
the evolution of the project.

E .2.3 System Operational Profile
Software reliability measurement models

assume that the software is tested in a manner
similar to operational use. The term
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OPerationaI profile is used to describe the list
of al operations the system can perform and
the probability of occurrences of each
operation.

For Project A, recorded data from previous
missions and user training scenarios were
used to develop the test cases. This ensured a
relatively accurate operational profile for
testing.

E.3 Select Tests

Section 5 identifies two approaches to test
selection. First, select tests that duplicate the
operational environment of the system.
Second, select tests that are more severe than
the anticipated usage of the system. The
second approach is intended to accelerate the
test process by encountering more faults in
less elapsed time.

As stated previously, Project A tested using
actua data collected from previous missions.
Project A also conducted a separate “stress
test” of the system using simulated data that
executed the software well above design
limits.

E.4 Select Models

Section 6 defines a set of model selection
criteria and recommends four models as a
starting point for software religbility analysis.

Project A examined each of the recommended
models and determined that a special case of
the Generalized Exponential model was
practical for the situation. Project A experi-
mented with several models contained in the
Generalized Exponential Framework and
chose the Musa Basic Model based on its
goodness-of-fit and ability to handle
incremental  releases during test.

The other three recommended models were
not practical for Project A. The fit obtained
using Musa / Okumoto logarithmic Poisson
model could not be validated. The
Schneidewind  model  requires equaly  spaced
execution intervals, which was not the case
for the project since system active time was
collected rather than execution or wall-clock
time. Finally the Littlewood / Verrall model
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implementation available to the project objectives.
required time between failure data as input : : : :
rather than the test interval lengths and counts Section 7 outlines a nine step data collection
that were collected. procedure as follows:
1) Edablish the-objectives
E. 5 Collect Data :2)) APlanI the (ilata collection process
The data collection effort must be geared PPy 00IS -
toward the overal objectives of the software g ng}’('fn? t;a{rri\gn%un
reliability effort. The objective for Project A 8 Imolement the olan
was to forecast the failure rate of the software M gnitor data cgllecti on
at release, and to estimate the number of 8 Use the daa
software-related failures during a mission. 9 Provide feedback

Section 7 recommends that data collection be
restricted to the data required for the specified

Date:
Scheduled  Time  (hrs):
Effective Time (hrs): Lost Time (hrs):
Workstation: Operations:
Host: DSs. —
Simulations:.
other: —

Tet Sesson Raing (check one):
Excelent___ Good___ Fair- Poor-

Workstation  Subsystems and  Highlights:

Host  Highlights:

Personnel:

Discrepancies  Written:

Impact Number Written
Critical
Major
Minor
Itemized DR Lit:
Number Impact Subsystem  Description

Figure E. 1 Test Sesson Report Form
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It dso defines data primitives that should be
collected for any software project. These
primitives support the AIAA software
reliability database and would be useful for a

repository supporting future planning.

To meet Project A objectives for reiability
andyss data on the number of system active
hours during each test interva, the Size of the
software under test, and the number of
recorded failures by severity during the
intervdl were collected.

The study period consisted of 126 test
sessions. At the end of each test session, a
test session report form was completed by the
test monitor. A sample test session report
form is shown in Figure E. 1. In generd, the
form required the test monitor to answer
severd  short  questions, answers  document
the impact of al observed falures and other
characterigtics of the test session.

During each test sesson the individud testers
complete a form describing each failure oc-
currence. Theform is called a discrepancy
report (DR). A completed DR form contains
details of the test environment and the behav-
lor of the system when the falure occurred.
At the concluson of each test sesson dl DR
forms are delivered to the development
organization for invedtigation and resolution.

The quality of the test session data was
checked via independent inspection.
Occasionaly, an anomaly or contradiction
aose through the inspection or subsequent
analyss. If the data reporting was inconss
tent across testers, the test monitor who filed
the report was interviewed for claification.
For example, some testers did not fill out a
DR form if a subsystem other than the one
under test failed during the session. For-
tunately, this data could inferred from the
summary text on the test sesson report form,
usually in the form’s “Highlights’ or “Lost
Time" sections. An example of such an infer-
ence is the determination of the number of
fallures during a test sesson. Since a descrip-
tion read “host crashed and we lost x hours
while the offending subsystem’ s develop-
ment team investigated,” but no DR form was
completed since the tester was “not testing the
host,” afailure could be inferred with rea-
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sonable certainty. Data were not incorporated
into the data set used for this andyss if the
inference was deemed unreliable.

E. 6 Determine Model
Parameters

The AIAA recommended practice identifies
three techniques to determine model parame-
ters. 1) method of moments, 2) least squares,
and 3) maximum likelihood. These are useful
if the practitioner wishes to develop his / her
own tool. However, the document only
supplies the equations necessary to imple-
ment the maximum likeihood technique. To
implement other parameter estimation  tech-
niques, the practitioner must consult sources
other than this document.

To save effort on parameter determingtion a
prectitioner can select an automated tool that
provides the models and estimation tech-
niques required by your project. The AIAA
recommended practice ligs severd avalable
tools in Appendix B and ligs the models each
tool supports.

For project A, the SRE toolkit supplied by
AT&T was used to edtimate the parameters
for the Musa Basc Modé.

E. 7 Validate the Mode€

Section 5.7 recommends vaidating the model
“fit" on the observed data with some level of
confidence using statistical tests such as Chi-
square or Kolmogorov-Smirnov. These tests
ae designed to detect fairly gross disagree-
ments between the data and the fitted mode.

Project A did not use either technique.
Instead, they performed a visua comparison
of the expected model with the actual data
using the plot shown in Figure E.2. This
infforma  heuridic procedure dlowed them to
fed comfortable with the modd forecedts

E. 8 Peform Appropriate
Analysis

Section 5.2 provides summaries of severa
different analysis procedures supporting
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common enginering activities. Among  other
topics the AIAA list includes two areas of
interest to Project A: (1) forecasting the
current reliability, and (2) forecasting the
achievement of attaining a rdiability god.

Number of
Failures

Expected

-t \‘

AIAA R-013 92 EE 0b95534% 0000700 514 MWW

Figure E.3 shows the failure rate curves for
each of the falure categories defined by the
test team. Using these curves the current
reliability can be forecadt.

Observed and Expected Failures vs Time for Musa
Basic Execution Time Model

O&erved

Failures
Per
Hour

Critical

System Active Test Time (Hours)

Figure E2 Informa Modd Vdidation
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APPENDIX F

USING RELIABILITY

MODELS FOR DEVELOPING
TEST STRATEGIES

F. 1 Allocating Test Resources

It is important for software organizations to
have a strategy for testing; otherwise, test
costs are likely to get out of control. Without
a strategy, each module you test may be
treated equaly with respect to dlocation of
resources. You need to treat your modules
unequaly! That is, dlocate more test time,
effort and funds to the modules which have
the highest predicted number of failures,
F(t1,12), during the interva t1,t2, where t1,t2
could be execution time or labor time (of
testers) for a single module. In the remainder
of this section, “time’ means execution time.
Use the convention that you make a pre-
diction of failures at tl for a continuous
intervd with end-points ti+l and t2.

The following sections describe how a
reliability model can be used to predict
F(t1,12). The test dtrategy is the following:

Allocete test execution time to your modules
in proportion to F(t 1 ,t2).

Model parameters and ﬁredictions ae updated
based on observing the actua number of
failures, X1, during0,t1. Thisisshownin
Figure F. 1, where you predict F(t1 ,t2), at tl
during t1,t2, based on the model and Xo 1.
In this figure, tm is totd avalable test time for
a sngle module. Note that you could have t2
= tm (i.e, the prediction is made to the end of
the test period).

Based on the updated predictions, you may
want to reallocate your test resources. Of

ANSI/AIAA R-013-1992

course, it could be disruptive to your
organization to redlocate too frequently. So,
you could predict and reallocate at major
milestones (i.e., formal review of test
results).

Usng the Schneidewind software reiability
model, and the Space Shuttle Primary
Avionics Software Subsystem as an example,
the process of using prediction for dlocating
test resources is developed. Two parameters,

o and B, which will be used in the following
equations, are estimated by applying the
model to- X 1. Once the parameters have
been established, you can predict various
quantities that will assst you in dlocating test
resources, as shown in the following
equations:

Number of falures during O,t;

F(t) = (o/B)(1 - exp(-B1)] (E.1)

. Usng (F.l) and Figure F.I, you can
predict number of falures during t 1 ,t2:

F(t1,2) = (o/B){1 - exp(-P12)] - Xp1 (F.2)

Also, you can predict maximum number
of failures during thelife (t = o) of the
software:

F(e) = (a/B) (F.3)

. Using (F.3), you can predict the
maximum remaining number of fallures a
t

R = (a/B) - Xo,t (F.4)

Given n modules, alocate test execution time
eriods T; for each module i according to the
ollowing  equation:

----------------

Figure F. 1 Reliability prediction time scde
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T, = Fi(th,tz)n(tg -t) (F.5)
Y Fi(ty,tp)

i=1

In (F.5), note that although predictions are
made using (F.2) for a single module, the
totd available test execution time (n)(t2 - tl)
Is allocated for each module i across n
modules. You use the same inteva 0,20 for

each module to estimate a and B and the
same interva 20,30 for each module to make
predictions, but from then on a variable
amount of test time Tj is used depending on
the predictions.

TablesF.I and F.2 summarize the results of
applying the model to the failure data for
three Space Shuttle modules (operationa
increments). The modules are executed con-
tinuously, 24 hours per day, day after day.
For illudtrative purposes, each period in the
test interval is assumed to be equal to 30
days. After executing the modules during
0,20, the SMERFS program was applied to
the observed failure data during 0,20 to

obtain estimates of a and B. The totd number

of failures observed during 0,20 and the
edimated parameters are shown in Table F..

Equations (F.2), (F.3), (F.4) and (F.5) were
used to obtain the predictions in Table F.2
during 20,30. The prediction of F(20,30) led
to the prediction of T, the dlocated number of
test execution time periods. The number of
additional failures that were subsequently
observed, as testing continued during

20,204T, is shown as X(20,20+T).

Comparing Table F.I with Table F.2, you
will see that there is the possibility of
additional failures occurring in Module 1
(0.95 falures) and Module 2 (0.50 failures),
based on predicted maximum number of
failures F(eo), That is, for these modules,
[X(0,20) + X(20,20+T)] < F(es). Note that
the actud F(eo) would only be known after all
testing is complete and was not known at
20+T. Thus you need additiond procedures
for deciding how long to test to reach a given
number of remaining failures. A variant of
this decision is the stopping rule (when to
stop testing?). This is discussed in the
following  section.

Table F. 1 Obsarved Fallures and Modd Parameters

X(0,20)
Failures o B
Module 1 12 1.69 0.13
Module 2 11 1.76 0.1
Module 3 10 0.68 0.0
Table F.2 Allocation of Test Resources
F(o0) F(20,50) RQ20) T X(20, 20+T)
failures failures failures periods failures
‘Module 1
Predicted 12.95 0.695 0.952 76
Actud 00 0.000 000 0
MPI‘CdIQOOu!et;d 12.5 1.32 15 144
Actug] 3 132 2.0 ' I
[ nIodue 3
Predicted 10.81 0.73 0.81 8.0
Actud .00 .00 4.0 T
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F. 2 Making Test Decisions

In addition to alocating test resources, you
can use reliability prediction to esimate the
minimum total test execution timet2 (i.e.,
interval 0,t2) necessary to reduce the
predicted maximum number of remaining
failures to R(t2). To do this, subtract
equation (F. 1) from (F.3), set the result equal
to R(t2), and solve for t2:

12 = {In [(/BYR(2)])/B (F.6)
where R(t2) can be established from:
R(12) = (p)(a/B) (F.7)

where p is the desired fraction (percentage) of
remaining failures at t2. Substituting (F.7)
into (F.6) gives:

56
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2 = {In [(1/p)]}/B (F.8)

(F.8) is plotted for Module 1 and Module 2 in
Figure F.2 for various vaues of p

You can use (F.8) as arule to determine
when to dtop testing a given module.

Using (F.8) and Figure F.2 you can produce
Table F.3 WhICh tells you the following: the
totd minimum test execution time t2 from
time O to reach essentially O remaining
fallures (i.e., at p = .001 (.1%), predicted
remaining failures are .01295 and 01250 for
Module 1 and Module 2, respectively (see
(F.7) and Table F.2)); the additional_test
execution time beyond 20+T shown in Table
F.2; and the actual amount of test time
required, starting at 0, for the “last” falure to
occur (this quantity comes from the data and
not from prediction). You don't know that it
is necessarily the last; you only know that it

0 0.02 0.04

0.06 0.08 0.1

Figure F.2 Execution time needed to reach the desred fraction of remaining failures
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was the “last” after 64 periods (1910 days)
and 44 periods (1314days)forModule 1 and
Module 2, respectively. So, 12 = 52.9 and t2
= 49.0 periods would constitute your

stopping rule for Module 1 and Module 2,
respectively. This procedure allows you to
exercise control over software quality.

Table F.3 Test Time Required to Reach "0" Remaining Falures (p = .001)

2 Additiond Tet Time | Lasl Fafure Found
periods periods periods
Module 1 52.9 45.3 o4
Module 2 49.0 6 pavih

70

CCPYRIGHT 1999 Anerican Institute of Aeronautics and Astronautics
July 15, 1999 13:28:13

Information Handling Services, 1999



AIAA R-013 92 ®W® 0695534 0001043 007 M

American Institute of Aeronautics and Astronautics

The Aerospace Center
370 L'Enfant Promenade, SW
Washington, DC 20024-2518

ISBN 1-56347-024-1

CCOPYRIGHT 1999 Anerican |Institute of Aeronautics and Astronautics

July 15 1999  13:28:13 Information Handling Services, 1999



